

Section 1: The scalar product

Exercise level 3

- 1. Given that $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$ is the position vector of a point A, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j}$ is the position vector of a point B and θ the angle between \mathbf{a} and \mathbf{b} , use the cosine rule in the triangle OAB to show that $|\mathbf{a}||\mathbf{b}|\cos\theta = a_1b_1 + a_2b_2$.
- Use the scalar product to prove that (ac+bd)² ≤ (a²+b²)(c²+d²) for all real a, b, c and d. Find a condition on a, b, c and d for the equality to hold.
- 3. Show that if $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$ are perpendicular then \mathbf{u} and \mathbf{v} must have the same modulus.

