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Section 2: Proof by induction 
 

Notes and Examples 
 
These notes contain subsections on 

 Types of proof: a reminder 

 Proof by induction 

 Other types of proof by induction 
 
 

Types of proof: a reminder 
 
You have probably already met the idea of proof in your study of 
mathematics.  
 
As a reminder, here are some of the basic ideas about proof: 

 To prove something in mathematics, you need to show that it is true for 
all possible cases. For example, if you wanted to prove that the sum of 
the first n odd numbers is given by n², you could check as many 
different values of n as you like, or you could get a computer to check 
all values of n up to a very large value, but this would still not prove the 
result. You might feel pretty confident that the result was correct, but 
you would not have a proof. 

 To disprove something in mathematics, you only need to find one 
example for which it is not true. This is called a counterexample. 

 
There are several different types of proof which you may have already come 
across: 

 Proof by exhaustion: this is when you check all possible cases. You 
can’t do this if there is an infinite number of cases, as in the example 
above about the sum of the first n odd numbers. However, you could 
use proof by exhaustion to prove that 101 is prime, since you could test 
to see if 101 is divisible by any number less than 101. 

 Proof by deduction: this is when you use known results to deduce 
further results. For example, there are several ways to prove 
Pythagoras’ theorem, using results you already know, such as the area 
of a triangle. 

 Proof by contradiction: here you assume that the result is not true, and 
use this assumption to deduce a result which is impossible, or 
contradicts the original assumption. This means that the original 
assumption must be wrong. 

 
 

Proof by induction 
 
In this section you meet another method of proof, called proof by induction. 
Proof by induction is a topic that many students find difficult. In fact it is not 
really all that hard to actually do the questions; the problem is in 
understanding how and why proof by induction works.  
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Here is a practical example which may help. 
 
 
The problem: prove that the maximum number of pieces into which you can 

cut a pizza with n cuts is given by 
2 2

2

n n 
. 

 
First you need to give some thought to the general principles of successful 
pizza cutting. If you want to get the maximum number of pieces with the 
minimum number of cuts, the first important thing is not to allow more than 
two cuts to meet at the same point.  
 
For example, three cuts all meeting at the same point would give six pieces, 
but three cuts which do not meet at the same point give seven pieces. 
 
 
 
 
 
 
 
Secondly, you must make sure that each new cut you make crosses each of 
the previous cuts. The diagrams below show a fourth cut being added. 
 
 
 
 
 
 
 
 
Let’s now see how this works out for the first four cuts. 
 
 
 
 
 
 
 
 
 

If you make 1 cut, you cut the 
pizza into two pieces. 
 

WRONG 
6 pieces 

CORRECT 
7 pieces 

WRONG 
10 pieces 

CORRECT 
11 pieces 

n = 1 

2 pieces 
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You can see that the formula  

  number of pieces from n cuts = 
2 2

2

n n 
 

works for the cases where n = 1, 2, 3 and 4. 
 
In general, suppose that you already have k cuts and you want to add the  
(k + 1)th cut. You need to make sure that this cut crosses all k of the cuts you 
have made so far. This means that you are cutting through k + 1 pieces to 
create k + 1 new pieces. (You start off cutting a single piece into two, then 
cross a cut line, then cut a second piece in two, then cross a second cut line, 
etc., until you have crossed to the other side of the pizza, cutting the last 
piece you encounter in two. That's one more new piece made than the cuts 
crossed). 
 
Now that you know how the pattern works, you can continue to check that the 
formula holds for different numbers of cuts without drawing the pizzas, just 
adding on from previous results. 
 
You know that 4 cuts produces 11 pieces. 
 

For 5 cuts, the number of pieces 
25 5 2

11 5 16
2

 
       

so the formula is correct for n = 5. 

 

When you make a second 
cut, you cut both pieces into 
two, giving two extra pieces, 
making a total of 4. 

When you make a third cut, you 
cross each of the two previous 
cuts. This means that you are 
cutting through three existing 
pieces, so you create three extra 
pieces. 

When you make a fourth cut, 
you cross each of the three 
previous cuts. This means that 
you are cutting through four 
existing pieces, so you create 
four extra pieces. 

n = 2 

4 pieces 

n = 3 

7 pieces 

n = 4 

11 pieces 
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For 6 cuts, the number of pieces 
26 6 2

16 6 22
2

 
       

so the formula is correct for n = 6. 
 

For 7 cuts, the number of pieces 
27 7 2

22 7 29
2

 
       

so the formula is correct for n = 7. 
 
Suppose you want to see if the formula is true for n = 100. 
You could use the formula to work out the number of pieces for n = 99: 

 Number of pieces 
299 99 2

4951
2

 
  . 

Then you could use this result to find the result for n = 100. 

 Number of pieces 
2100 100 2

4951 100 5051
2

 
    . 

 
So, the formula seems to work for n = 100, but to work this out you have 
assumed that the formula works for n = 99. All the above calculation tells you 
is that IF the formula is true for n = 99, THEN it is true for n = 100. 
 
You could check n = 99 in the same way, by assuming that the formula works 
for n = 98, and showing that adding on 99 gives the correct result for n = 99. 
This now tells you that IF the formula is true for n = 98, THEN it is true for  
n = 99. 
 
You could carry on working backwards like this, until you get down to a result 
which you already know is true, such as n = 7. Not a very efficient method of 
proof, and it doesn’t prove that the result is true for ALL values of n. However, 
you can generalise this process to show that it is true for all values of n. 
 
Assume that the formula is correct for the first k cuts. This means that you 

already have 
2 2

2

k k 
 pieces. You want to show that for k + 1 cuts, the 

number of pieces is given by 
2( 1) ( 1) 2

2

k k   
, which can be simplified to 

2 3 4

2

k k 
. 

 
So, after the (k + 1)th cut, which gives k + 1 additional pieces, the total number 
of pieces is given by 
 

    
2 2

1
2

k k
k

 
   

Simplifying gives 
2 22 2 2 3 4

2 2

k k k k k     
  

which is the expected result for k + 1 cuts. 
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What you have now shown is that IF the formula is true for n = k, THEN it is 
true for n = k + 1. 
 
This is true for ANY value of k. 
So, in a few lines, you have shown that: 
IF the formula is true for n = 99, THEN it is true for n = 100 
IF the formula is true for n = 42, THEN it is true for n = 43 
IF the formula is true for n = 10, THEN it is true for n = 11 
IF the formula is true for n = 13927, THEN it is true for n = 13928 

etc. 
 
Of course this applies to ALL possible values! 
 
This means that all you need to do is to check that the result is true for an 
initial case, say n = 1, and you can then say: 
 
Since the formula is true for n = 1, then it must be true for n = 2. 
Now since the formula is true for n = 2, then it must be true for n = 3. 
Now since the formula is true for n = 3, then it must be true for n = 4. 
And so on. 
 
You can continue this as far as you like. So the formula is true for all values of  
n ≥ 1. 
 
There are three essential steps in a proof by induction: 
 
Step 1  Prove that the result is true for a starting value, such as n = 1. 
Step 2  Prove that if it is true for n = k, then it is true for n = k + 1. 
Step 3  Conclude the argument. 
 
 
Example 1 

Prove that  
1

( 1)

2




n

r

n n
r . 

 

Solution 

Step 1:  When n = 1, 
1

1

1



r

r  

  When n = 1, 
( 1) 1 2

1
2 2

 
 

n n
 

  So it is true for n = 1. 

 

Step 2:  Assume that it is true for n = k, so 
1

( 1)

2




k

r

k k
r  
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  For n = k + 1, 
1

1 1

( 1)
( 1) ( 1)

2

( 1) 1
2

2
( 1)

2

( 1)(( 1) 1)

2



 


     

 
   

 

 
   

 

  


 
k k

r r

k k
r r k k

k
k

k
k

k k

 

 

Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

  Since it is true for n = 1, then it is true for all positive integers by  

   induction. 

 
 
Step 3 is just writing down the couple of sentences shown in the example 
above. You MUST include this: marks will be given for it. Remember that  
n = 1 may not always be the starting point! 
 
For a challenge, click here and try to find the fallacy in the “proof by 
induction”. 
 
 

Other types of proof by induction 
 
Proof by induction is often used to prove formulae for the sum of a series. 
However, there are many other situations in which it can be used.  
 
 
Matrix powers 
 
Example 2 

For 
1 2

0 2

 
  
 

A  prove that 
11 2 2

0 2

n

n

n

 
  
 

A  

 

Solution 

When 1n  , 
2

1

1

1 4 2 1 21 2 2

0 2 0 20 2

     
        

    
A A  

So the result is true for 1n    

Assume 
11 2 2

0 2

k

k

k

 
  
 

A  

http://www.math.toronto.edu/mathnet/falseProofs/sameAge.html
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1

1

1

2

1

2

1

1 21 2 2

0 20 2

1 2 2(2 2)

0 2 2

1 2 2 4

0 2

1 2 2

0 2

k k

k

k

k

k

k

k

k

k

















   
   

  

  
  

 

  
  
 

 
  
 

A A A

 

 

So if the result is true for n = k, then it is true for n = k + 1. 

Since it is true for n = 1, then it is true for all positive integers by induction. 

 
 
Sequences 
 
 
Example 3 

Given that 
1 2u   and 

1 4 3n nu u   , prove that 13 4 1n

nu      

 

Solution 

For 1n  , 1 1

1 3 4 1 3 1 2u        

So the result is true for 1n    

 

Assume that 13 4 1k

ku     

1

1

4 3

4(3 4 1) 3

3 4 4 3

3 4 1

k k

k

k

k

u u



 

   

   

  

 

 

So if the result is true for n = k, then it is true for n = k + 1. 

Since it is true for n = 1, then it is true for all positive integers by induction. 

 
 
Divisibility 
 

Example 4 

Prove that 2 2 12 3n n   is divisible by 7 for all n  1 

 

Solution 

For 1n  , 2 2 1 3 32 3 2 3 8 27 35n n        which is a multiple of 7. 

 

Assume that 2 2 12 3k k   is a multiple of 7 for some k. 
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So 2 2 12 3 7k k m    for some integer m 

so 2 1 23 7 2k km    

For 1n k   , ( 1) 2 2( 1) 1 3 2 3

2 2 1

2 2

2 2

2

2

2 3 2 3

2 2 9 3

2 2 9(7 2 )

2 2 63 9 2

63 7 2

7(9 2 )

     

 

 

 





  

   

   

    

  

 

k k k k

k k

k k

k k

k

k

m

m

m

m

 

     which is a multiple of 7. 

 

So if the result is true for n = k, then it is true for n = k + 1. 

Since it is true for n = 1, then it is true for all positive integers by induction. 

 

 
 


