Edexcel AS Further Maths Sequences and series "integral

Section 2: Proof by induction

Exercise level 2

In Questions 1 to 12 prove the given result by induction.

1. $\sum_{r=1}^{n} r^{2}(r+1)=\frac{n(n+1)(n+2)(3 n+1)}{12}$
2. $\sum_{r=1}^{n} \frac{r}{2^{r}}=2-\frac{(n+2)}{2^{n}}$
3. $\sum_{r=1}^{n} 2 \times 3^{r}=3\left(3^{n}-1\right)$
4. The sum of the first n terms of the series $(1 \times 3)+(2 \times 4)+(3 \times 5)+$ \qquad is

$$
\frac{n(n+1)(2 n+7)}{6}
$$

5. The sum of the first n terms of the series

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots . .+\frac{1}{(2 r-1)(2 r+1)} \text { is } \frac{n}{(2 n+1)}
$$

6. $\sum_{r=1}^{n} 2^{r-1}=2^{n}-1$
7. For a sequence defined by $u_{n+1}=3 u_{n}+2$ and $u_{1}=1$ for $n \geq 1, u_{n}=2\left(3^{n-1}\right)-1$.
8. Given that $u_{n+1}=2 u_{n}+1$ where n is a positive integer and $u_{1}=5, u_{n}=3 \times 2^{n}-1$.
9. If $\mathbf{A}=\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right), \mathbf{A}^{n}=\left(\begin{array}{cc}2 n+1 & -n \\ 4 n & 1-2 n\end{array}\right)$ where n is a positive integer.
10. If $\mathbf{M}=\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right), \mathbf{M}^{n}=5^{n-1}\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right)$ where $n \geq 1$.
11. $n^{3}+3 n^{2}-10 n$ is a multiple of 3 for all positive integers n.
12. $3^{2 n}-1$ is a multiple of 8 for all positive integers n.
