Edexcel AS Further Maths Sequences and series "integral

Section 2: Proof by induction

Exercise level 1

1. In this question you will prove that for the sequence $u_{1}=2, u_{n+1}=2 u_{n}-3$, the nth term of the sequence is given by $u_{n}=3-2^{n-1}$.
(i) Show that the result is true for $n=1$.
(ii) Assume that $u_{k}=3-2^{k-1}$. Use this and the recurrence relation $u_{k+1}=2 u_{k}-3$ to write down an expression for u_{k+1}.
(iii) Show that your answer to (ii) can be written in the form $u_{k+1}=3-2^{k}$.
(iv) Write the conclusion to your proof.
2. In this question you will prove that for the matrix $\mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ 2 & 1\end{array}\right), \mathbf{A}^{n}=\left(\begin{array}{cc}2^{n} & 0 \\ 2^{n+1}-2 & 1\end{array}\right)$ for all $n \geq 1$.
(i) Show that the result is true for $n=1$.
(ii) Assume that $\mathbf{A}^{k}=\left(\begin{array}{cc}2^{k} & 0 \\ 2^{k+1}-2 & 1\end{array}\right)$. Multiply this by \mathbf{A} to find the matrix \mathbf{A}^{k+1}.
(iii) Show that your answer to (ii) can be written in the form

$$
\mathbf{A}^{k+1}=\left(\begin{array}{cc}
2^{k+1} & 0 \\
2^{k+2}-2 & 1
\end{array}\right)
$$

(iv) Write the conclusion to your proof.
3. In this question you will prove that the sum of the series $1+4+7+\ldots+(3 n-2)$ is $\frac{1}{2} n(3 n-1)$.
(i) Show that the result is true for $n=1$.
(ii) Write down the $(k+1)$ th term of the series.
(iii) Assume that the sum of the first k terms is $\frac{1}{2} k(3 k-1)$

So the sum of the first $(k+1)$ terms is $\frac{1}{2} k(3 k-1)+$ the $(k+1)$ th term.
Use this, and your answer to (ii), to write down an expression for the sum of the first $(k+1)$ terms.
(iv) Show that your answer to (iii) can be written in the form

$$
\frac{1}{2}(k+1)(3(k+1)-1) .
$$

(v) Write the conclusion for your proof.
4. Follow the same method as for question 3 to prove that $\sum_{r=1}^{n}(2 r-3)=n(n-2)$.

