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Section 1: Summing series 
 

Notes and Examples 
 
These notes contain subsections on 

 The sum of the first n natural numbers 

 The sum of the squares of the first n natural numbers 

 The sum of the cubes of the first n natural numbers 
 
 

The sum of the first n natural numbers 
 
The sum of the first n natural numbers, 1 + 2 + 3 + … + n can be expressed in 

sigma notation as 
1


n

r

r . The formula for this series is 
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This formula can be proved in many different ways. Here are two methods. 
 

 Proof of 1
2
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   using the sum of an arithmetic series 

 
If you have covered arithmetic series (A level Mathematics), you will 
know that an arithmetic series is a series in which each term differs 
from the last by a fixed number, the common difference. You will also 
know that the sum of an arithmetic series with n terms is given by 

1
2

[2 ( 1) ]nS n a n d   , where a is the first term and d is the common 

difference. 
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 Proof of 1
2
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   using triangle numbers 

The nth triangle number, Tn, is the number of dots in a triangular array 
having n rows, with 1 dot on the top row, 2 dots on the second and so 
on, and n dots on the nth row. The sum 1 + 2 + 3 + … + n is therefore Tn. 

  
 
 
 
 
 
 
 

The triangle for Tn can be put next to the same triangle drawn upside 
down, to form a rectangle with n rows and n + 1 columns. 

 
 
 
 
 
 
 
 
 

The number of dots in this rectangle is given by n(n + 1), so the nth 

triangle number 1
2

( 1)nT n n   

 
 
Example 1 

Find  (i) 
50

1


r

r  

 (ii) 
100

50


r

r  

 

Solution 

(i) 
50

1
2

1

50 51

1275



  


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(ii) 
100 100 49

50 0 0

1 1
2 2

100 101 49 50
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The sum of the squares of the first n natural numbers 
 
The sum of the squares of the natural numbers is given by the formula 
 

2 1
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There are many ways to prove this formula. Here is one. 
 

 Proof of 2 1
6
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( 1)(2 1)
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r n n n


    

  
 
 
 
 
 
 
 
 The diagram above shows that 

  2 1 2 3 ... ( 1) ( 1) ... 3 2 1r r r r              

 So 2

1

n

r

r


 can be expressed as 

2

1

1 (1 2 1) (1 2 3 2 1) (1 2 3 4 3 2 1) ... (1 2 ... ... 2 1)
n
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 So each of the three diagrams below represents 2

1

n

r

r


 . 

 
... 1 1 1 1 1

... 2 2 2 2 1

... 3 3 3 2 1

... 4 4 3 2 1

... 5 4 3 2 1

... ... ... ... ... ...

    

1

1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1

... ... ... ... ... ... ... ... ...

 

1 1 1 1 1 ...

1 2 2 2 2 ...

1 2 3 3 3 ...

1 2 3 4 4 ...

1 2 3 4 5 ...

... ... ... ... ... ...

 

 
Now imagine that you can slide the left and right diagrams on to the 
centre diagram so that the shaded boxes shown below overlap … 

 
... 1 1 1 1 1

... 2 2 2 2 1

... 3 3 3 2 1

... 4 4 3 2 1

... 5 4 3 2 1

... ... ... ... ... ...

     

1

1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1

... ... ... ... ... ... ... ... ...

 

1 1 1 1 1 ...

1 2 2 2 2 ...

1 2 3 3 3 ...

1 2 3 4 4 ...

1 2 3 4 5 ...

... ... ... ... ... ...
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 … and add the overlapping numbers: 
... 1 1 1 1 1 1 1 1 1 ...

... 2 2 2 2 2 2 2 2 2 ...

... 3 3 3 3 3 3 3 3 3 ...

... 4 4 4 4 4 4 4 4 4 ...

... 5 5 5 5 5 5 5 5 5 ...

... ... ... ... ... ... ... ... ... ... ...

 

 The grid above has 2n + 1 columns, and so it represents 
1
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 The original three grids each represent 2
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The sum of the cubes of the first n natural numbers 
 
The sum of the cubes of the natural numbers is given by the formula 
 

3 2 21
4

1

( 1)
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r
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

   

Here is a geometrical proof. 

 Proof of 3 2 21
4

1

( 1)
n

r

r n n


   

Since 3 2r r r  , then r³ can be represented as the area of r squares of 
side r. 

 This means that 3

1

n

r

r


  is the total area of:   

1 square of side 1 + 2 squares of side 2 + 3 squares of side 3  
+ …. + n squares of side n. 

 
 These can be arranged as shown below up to n = 5. 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 
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The even sided squares overlap, but there is a gap (unshaded) of 
exactly the same size as the overlap, so the overlapping regions can 
be moved to fill the gaps. 

 This shows that 
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Any series which can be expressed in the form 3 2
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using the standard results for the series 
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1
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Example 2 

Find 2
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Take out a factor 
1
6
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