Section 1: Summing series

Notes and Examples

These notes contain subsections on

- The sum of the first *n* natural numbers
- The sum of the squares of the first *n* natural numbers
- The sum of the cubes of the first *n* natural numbers

The sum of the first *n* natural numbers

The sum of the first *n* natural numbers, 1 + 2 + 3 + ... + n can be expressed in sigma notation as $\sum_{r=1}^{n} r$. The formula for this series is

$$\sum_{r=1}^n r = \frac{1}{2}n(n+1)$$

This formula can be proved in many different ways. Here are two methods.

• **Proof of** $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$ using the sum of an arithmetic series

If you have covered arithmetic series (A level Mathematics), you will know that an arithmetic series is a series in which each term differs from the last by a fixed number, the common difference. You will also know that the sum of an arithmetic series with *n* terms is given by $S_n = \frac{1}{2}n[2a + (n-1)d]$, where *a* is the first term and *d* is the common difference.

$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n \text{ is an arithmetic series with } a = 1 \text{ and } d = 1.$$

So
$$\sum_{r=1}^{n} r = \frac{1}{2}n[2a + (n-1)d]$$
$$= \frac{1}{2}n[2 + (n-1) \times 1]$$
$$= \frac{1}{2}n[2 + n-1]$$
$$= \frac{1}{2}n(n+1)$$

• Proof of $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$ using triangle numbers

The *n*th triangle number, T_n , is the number of dots in a triangular array having *n* rows, with 1 dot on the top row, 2 dots on the second and so on, and *n* dots on the *n*th row. The sum 1 + 2 + 3 + ... + n is therefore T_n .

The triangle for T_n can be put next to the same triangle drawn upside down, to form a rectangle with *n* rows and n + 1 columns.

•	•	•	•	•	•	
•	•	•	•	•	•	
•	•	•	•	•	•	
•	•	•	ullet	•	•	
•	•	•	ullet	•	•	

The number of dots in this rectangle is given by n(n + 1), so the *n*th triangle number $T_n = \frac{1}{2}n(n+1)$

Solution

(i)
$$\sum_{r=1}^{50} r = \frac{1}{2} \times 50 \times 51$$

= 1275

(ii)
$$\sum_{r=50}^{100} r = \sum_{r=0}^{100} r - \sum_{r=0}^{49} r$$
$$= \frac{1}{2} \times 100 \times 101 - \frac{1}{2} \times 49 \times 50$$
$$= 3825$$

Edexcel AS FM Series 1 Notes and Examples

The sum of the squares of the first *n* natural numbers

The sum of the squares of the natural numbers is given by the formula

There are many ways to prove this formula. Here is one.

Edexcel AS FM Series 1 Notes and Examples

... and add the overlapping numbers:

 1	1	1	1	1	1	1	1	1	
 2	2	2	2	2	2	2	2	2	
 3	3	3	3	3	3	3	3	3	
 4	4	4	4	4	4	4	4	4	
 5	5	5	5	5	5	5	5	5	

The grid above has 2n + 1 columns, and so it represents $(2n+1)\sum_{n=1}^{n} r$.

The original three grids each represent $\sum_{r=1}^{n} r^2$, so this gives

$$3\sum_{r=1}^{n} r^{2} = (2n+1)\sum_{r=1}^{n} r$$
$$= (2n+1)\frac{1}{2}n(n+1)$$
$$= \frac{1}{2}n(n+1)(2n+1)$$
$$\sum_{r=1}^{n} r^{2} = \frac{1}{6}n(n+1)(2n+1)$$

The sum of the cubes of the first *n* natural numbers

The sum of the cubes of the natural numbers is given by the formula

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}$$

Here is a geometrical proof.

• **Proof of** $\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$

Since $r^3 = r \times r^2$, then r^3 can be represented as the area of r squares of side r.

This means that $\sum_{i=1}^{n} r^{3}$ is the total area of:

1 square of side 1 + 2 squares of side 2 + 3 squares of side 3 + \dots + *n* squares of side *n*.

These can be arranged as shown below up to n = 5.

Edexcel AS FM Series 1 Notes and Examples

The even sided squares overlap, but there is a gap (unshaded) of exactly the same size as the overlap, so the overlapping regions can be moved to fill the gaps.

This shows that

$$\sum_{r=1}^{n} r^{3} = (1+2+3+\ldots+n)^{2} = \left(\sum_{r=1}^{n} r\right)^{2}$$
$$= \left(\frac{1}{2}n(n+1)\right)^{2}$$
$$= \frac{1}{4}n^{2}(n+1)^{2}$$

Any series which can be expressed in the form $\sum_{r=1}^{n} (ar^3 + br^2 + cr + d)$ can be expressed as $\sum_{r=1}^{n} (ar^3 + br^2 + cr + d) = a \sum_{r=1}^{n} r^3 + b \sum_{r=1}^{n} r^2 + c \sum_{r=1}^{n} r + \sum_{r=1}^{n} d$ and summed using the standard results for the series $\sum_{r=1}^{n} r$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$. Note that $\sum_{r=1}^{n} d = d + d + d + ... + d = nd$.

Example 2
Find
$$\sum_{r=1}^{n} (r^2 + 2r - 1)$$
.
Solution
 $\sum_{r=1}^{n} (r^2 + 2r - 1) = \sum_{r=1}^{n} r^2 + 2\sum_{r=1}^{n} r - \sum_{r=1}^{n} 1$
 $= \frac{1}{6}n(n+1)(2n+1) + 2 \times \frac{1}{2}n(n+1) - n$ o
 $= \frac{1}{6}n[(n+1)(2n+1) + 6(n+1) - 6]$
 $= \frac{1}{6}n(2n^2 + 3n + 1 + 6n + 6 - 6)$
 $= \frac{1}{6}n(2n^2 + 9n + 1)$