Edexcel AS Further Maths Sequences and series "integral'

Section 1: Summing series

Notes and Examples

These notes contain subsections on

- The sum of the first n natural numbers
- The sum of the squares of the first n natural numbers
- The sum of the cubes of the first n natural numbers

The sum of the first \boldsymbol{n} natural numbers

The sum of the first n natural numbers, $1+2+3+\ldots+n$ can be expressed in sigma notation as $\sum_{r=1}^{n} r$. The formula for this series is

$$
\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)
$$

This formula can be proved in many different ways. Here are two methods.

- Proof of $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$ using the sum of an arithmetic series If you have covered arithmetic series (A level Mathematics), you will know that an arithmetic series is a series in which each term differs from the last by a fixed number, the common difference. You will also know that the sum of an arithmetic series with n terms is given by $S_{n}=\frac{1}{2} n[2 a+(n-1) d]$, where a is the first term and d is the common difference.
$\sum_{r=1}^{n} r=1+2+3+\ldots+n$ is an arithmetic series with $\mathrm{a}=1$ and $\mathrm{d}=1$.

$$
\text { So } \begin{aligned}
\sum_{r=1}^{n} r & =\frac{1}{2} n[2 a+(n-1) d] \\
& =\frac{1}{2} n[2+(n-1) \times 1] \\
& =\frac{1}{2} n[2+n-1] \\
& =\frac{1}{2} n(n+1)
\end{aligned}
$$

Edexcel AS FM Series 1 Notes and Examples

- Proof of $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$ using triangle numbers

The nth triangle number, T_{n}, is the number of dots in a triangular array having n rows, with 1 dot on the top row, 2 dots on the second and so on, and n dots on the nth row. The sum $1+2+3+\ldots+n$ is therefore T_{n}.

The triangle for T_{n} can be put next to the same triangle drawn upside down, to form a rectangle with n rows and $n+1$ columns.

The number of dots in this rectangle is given by $n(n+1)$, so the nth triangle number $T_{n}=\frac{1}{2} n(n+1)$

Example 1

Find
(i) $\quad \sum_{r=1}^{50} r$
(ii) $\sum_{r=50}^{100} r$

Solution

(i) $\quad \sum_{r=1}^{50} r=\frac{1}{2} \times 50 \times 51$

$$
=1275
$$

(ii) $\sum_{r=50}^{100} r=\sum_{r=0}^{100} r-\sum_{r=0}^{49} r$

$$
=\frac{1}{2} \times 100 \times 101-\frac{1}{2} \times 49 \times 50
$$

$$
=3825
$$

Edexcel AS FM Series 1 Notes and Examples

The sum of the squares of the first \boldsymbol{n} natural numbers

The sum of the squares of the natural numbers is given by the formula

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

There are many ways to prove this formula. Here is one.

- Proof of $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$

The diagram above shows that

$$
r^{2}=1+2+3+\ldots+(r-1)+r+(r-1)+\ldots+3+2+1
$$

So $\sum_{r=1}^{n} r^{2}$ can be expressed as

$$
\sum_{r=1}^{n} r^{2}=1+(1+2+1)+(1+2+3+2+1)+(1+2+3+4+3+2+1)+\ldots+(1+2+\ldots+r+\ldots+2+1)
$$

So each of the three diagrams below represents $\sum_{r=1}^{n} r^{2}$.

\ldots	1	1	1	1	1
\ldots	2	2	2	2	1
	\ldots	3	3	3	2
	1				
	4	4	3	2	1
	\ldots	4	3	2	1

Now imagine that you can slide the left and right diagrams on to the centre diagram so that the shaded boxes shown below overlap ...

Edexcel AS FM Series 1 Notes and Examples

... and add the overlapping numbers:

\ldots	1	1	1	1	1	1	1	1	1	\ldots
\ldots.	2	2	2	2	2	2	2	2	2	\ldots
\ldots.	3	3	3	3	3	3	3	3	3	\ldots
\ldots	4	4	4	4	4	4	4	4	4	\ldots
\ldots	5	5	5	5	5	5	5	5	5	\ldots
\ldots										

The grid above has $2 n+1$ columns, and so it represents $(2 n+1) \sum_{r=1}^{n} r$.
The original three grids each represent $\sum_{r=1}^{n} r^{2}$, so this gives

$$
\begin{aligned}
3 \sum_{r=1}^{n} r^{2} & =(2 n+1) \sum_{r=1}^{n} r \\
& =(2 n+1) \frac{1}{2} n(n+1) \\
& =\frac{1}{2} n(n+1)(2 n+1) \\
\sum_{r=1}^{n} r^{2} & =\frac{1}{6} n(n+1)(2 n+1)
\end{aligned}
$$

The sum of the cubes of the first \boldsymbol{n} natural numbers

The sum of the cubes of the natural numbers is given by the formula

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

Here is a geometrical proof.

- Proof of $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$

Since $r^{3}=r \times r^{2}$, then r^{3} can be represented as the area of r squares of side r.
This means that $\sum_{r=1}^{n} r^{3}$ is the total area of:
1 square of side $1+2$ squares of side $2+3$ squares of side 3
$+\ldots .+n$ squares of side n.
These can be arranged as shown below up to $n=5$.

Edexcel AS FM Series 1 Notes and Examples

The even sided squares overlap, but there is a gap (unshaded) of exactly the same size as the overlap, so the overlapping regions can be moved to fill the gaps.
This shows that

$$
\begin{aligned}
\sum_{r=1}^{n} r^{3} & =(1+2+3+\ldots+n)^{2}=\left(\sum_{r=1}^{n} r\right)^{2} \\
& =\left(\frac{1}{2} n(n+1)\right)^{2} \\
& =\frac{1}{4} n^{2}(n+1)^{2}
\end{aligned}
$$

Any series which can be expressed in the form $\sum_{r=1}^{n}\left(a r^{3}+b r^{2}+c r+d\right)$ can be expressed as $\sum_{r=1}^{n}\left(a r^{3}+b r^{2}+c r+d\right)=a \sum_{r=1}^{n} r^{3}+b \sum_{r=1}^{n} r^{2}+c \sum_{r=1}^{n} r+\sum_{r=1}^{n} d$ and summed using the standard results for the series $\sum_{r=1}^{n} r, \sum_{r=1}^{n} r^{2}$ and $\sum_{r=1}^{n} r^{3}$.
Note that $\sum_{r=1}^{n} d=d+d+d+\ldots+d=n d$.

Example 2

Find $\sum_{r=1}^{n}\left(r^{2}+2 r-1\right)$.

Solution

$$
\begin{aligned}
\sum_{r=1}^{n}\left(r^{2}+2 r-1\right) & =\sum_{r=1}^{n} r^{2}+2 \sum_{r=1}^{n} r-\sum_{r=1}^{n} 1 \\
& =\frac{1}{6} n(n+1)(2 n+1)+2 \times \frac{1}{2} n(n+1)-n \\
& =\frac{1}{6} n[(n+1)(2 n+1)+6(n+1)-6] \propto \\
& =\frac{1}{6} n\left(2 n^{2}+3 n+1+6 n+6-6\right) \\
& =\frac{1}{6} n\left(2 n^{2}+9 n+1\right)
\end{aligned}
$$

