Edexcel AS Further Maths Roots of polynomials integral

Section 2: Complex roots of polynomials

Exercise level 3

1. Which of the following can be a root of the equation $x^{2}+a x+b=0$ given that a and b are integers?

$$
\frac{1+\mathrm{i}}{4}, \quad \frac{1+\mathrm{i} \sqrt{11}}{2}, \quad \frac{1}{2}+\mathrm{i}, \quad \frac{1-\mathrm{i} \sqrt{7}}{2}
$$

2. Consider the equation

$$
z^{3}-a z^{2}+a z-1=0
$$

where a is real.
(i) Find a real root of the equation.
(ii) Find the range of values of a such that the equation has complex roots.
(iii) Show that all complex roots of the equation lie on the unit circle in the complex plane.
3. (i) Show that $(z+w)^{*}=z^{*}+w^{*}$ and $(z w)^{*}=z^{*} w^{*}$, where z and w are complex numbers.
(ii) Let $\mathrm{q}(x)=a_{m} x^{m}$, where a_{m} is a real number. Show that $(\mathrm{q}(z))^{*}=\mathrm{q}\left(z^{*}\right)$ for all complex numbers z.
(iii) Let $\mathrm{p}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where a_{n}, \ldots, a_{0} are real numbers. Show that $(\mathrm{p}(z))^{*}=\mathrm{p}\left(z^{*}\right)$ for all complex numbers.
Hence show that if $\mathrm{p}(z)=0$ then $\mathrm{p}\left(z^{*}\right)=0$.

