Edexcel AS Further Maths Roots of polynomials

Section 2: Complex roots of polynomials

Exercise level 3

1. Which of the following can be a root of the equation $x^2 + ax + b = 0$ given that *a* and *b* are integers?

$$\frac{1+i}{4}$$
, $\frac{1+i\sqrt{11}}{2}$, $\frac{1}{2}+i$, $\frac{1-i\sqrt{7}}{2}$.

2. Consider the equation

 $z^3 - az^2 + az - 1 = 0$

where a is real.

- (i) Find a real root of the equation.
- (ii) Find the range of values of a such that the equation has complex roots.
- (iii) Show that all complex roots of the equation lie on the unit circle in the complex plane.
- 3. (i) Show that $(z+w)^* = z^* + w^*$ and $(zw)^* = z^*w^*$, where z and w are complex numbers.
 - (ii) Let $q(x) = a_m x^m$, where a_m is a real number. Show that $(q(z))^* = q(z^*)$ for all complex numbers z.
 - (iii) Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where a_n, \dots, a_0 are real numbers. Show that $(p(z))^* = p(z^*)$ for all complex numbers. Hence show that if p(z) = 0 then $p(z^*) = 0$.

