Edexcel AS Further Maths Roots of polynomials "integral

Section 2: Complex roots of polynomials

Exercise level 2

1. An equation is of the form $\mathrm{f}(z)=0$, where $\mathrm{f}(z)$ is a polynomial of degree 4 with real coefficients.
Two of the roots of the equation are $(3+i)$ and $(1+3 i)$.
Find the equation.
2. Given that $1+\mathrm{i}$ is a root of the equation $z^{3}-2 z+k=0$ find the other roots and a value for k.
3. Show that $z=-1+\mathrm{i}$ is a root of the equation $z^{4}-2 z^{3}-z^{2}+2 z+10=0$ and find the remaining roots.
4. One root of the equation $z^{4}-6 z^{3}+18 z^{2}-30 z+25=0$ is $1+2 \mathrm{i}$.

Solve the equation.
5. Given that one root of the equation $z^{3}+a z+b=0$ is $p+q$ i where a and b are real and b is not zero, prove that
(i) $2 p\left(p^{2}+q^{2}\right)=b$
(ii) $-3 p^{2}+q^{2}=a$
(iii) p is a root of the equation $8 x^{3}+2 a x-b=0$.

