Edexcel AS Further Maths Roots of polynomials

Section 1: Roots and coefficients

Exercise level 2

- 1. One root of $2x^2 kx + k = 0$ is twice the other. Find k. You may assume that $k \neq 0$.
- 2. The two roots of $x^2 + (7-p)x p = 0$ differ by 5. Find the possible values for *p*.
- 3. If α and β are the roots of ax² + bx + c = 0 prove that
 (i) if β = 4α then 4b² = 25ac
 (ii) if β = α + 1 then a² = b² 4ac
- 4. If the roots of $x^3 + 5x^2 + hx + k = 0$ are α , 2α , and $\alpha + 3$ find α , *h* and *k*.
- 5. Solve the equation $24x^3 + 28x^2 14x 3 = 0$ given that the roots are of the form α , $\frac{\alpha}{r}$ and αr .
- 6. The equation $6x^3 + 11x^2 + kx 9 = 0$ has roots α , $\frac{1}{\alpha}$ and β . Find the value of k and solve the equation.
- 7. The roots of x³-2x²-x+2=0 are α, β, and γ. Find equations which have roots
 (i) 2α, 2β, 2γ
 (ii) α-3, β-3, γ-3
- 8. The roots of $x^4 + ax^3 + bx^2 + cx + d = 0$ are α , β , γ , and δ . Given that $\alpha + \beta = \gamma + \delta$, show that $a^3 + 8c = 4ab$.

