Edexcel AS Further Maths Roots of polynomials integral

Section 1: Roots and coefficients

Exercise level 2

1. One root of $2 x^{2}-k x+k=0$ is twice the other. Find k. You may assume that $k \neq 0$.
2. The two roots of $x^{2}+(7-p) x-p=0$ differ by 5 . Find the possible values for p.
3. If α and β are the roots of $a x^{2}+b x+c=0$ prove that
(i) if $\beta=4 \alpha$ then $4 b^{2}=25 a c$
(ii) if $\beta=\alpha+1$ then $a^{2}=b^{2}-4 a c$
4. If the roots of $x^{3}+5 x^{2}+h x+k=0$ are $\alpha, 2 \alpha$, and $\alpha+3$ find α, h and k.
5. Solve the equation $24 x^{3}+28 x^{2}-14 x-3=0$ given that the roots are of the form $\alpha, \frac{\alpha}{r}$ and αr.
6. The equation $6 x^{3}+11 x^{2}+k x-9=0$ has roots $\alpha, \frac{1}{\alpha}$ and β.

Find the value of k and solve the equation.
7. The roots of $x^{3}-2 x^{2}-x+2=0$ are α, β, and γ. Find equations which have roots
(i) $2 \alpha, 2 \beta, 2 \gamma$
(ii) $\alpha-3, \beta-3, \gamma-3$
8. The roots of $x^{4}+a x^{3}+b x^{2}+c x+d=0$ are α, β, γ, and δ. Given that $\alpha+\beta=\gamma+\delta$, show that $a^{3}+8 c=4 a b$.

