Summary sheet: Exponentials and logarithms

```
F1 Know and use the function a}\mp@subsup{}{}{x}\mathrm{ and its graph, where a is positive
Know and use the function e}\mp@subsup{e}{}{x}\mathrm{ and its graph
F2 Know that the gradient of e}\mp@subsup{e}{}{kx}\mathrm{ is equal to ke }\mp@subsup{}{}{kx}\mathrm{ and hence understand why the exponential model is suitable in many
applications
F3 Know and use the definition of 知}x\mathrm{ x as the inverse of a}\mp@subsup{}{}{x}\mathrm{ , where a is positive and }\textrm{x}\geq
Know and use the function In x and its graph
Know and use In x as the inverse function of e}\mp@subsup{\textrm{e}}{}{\textrm{x}
F4 Understand and use the laws of logarithms: 喽}x+\mp@subsup{\operatorname{log}}{a}{}y=\mp@subsup{\operatorname{log}}{a}{}(xy),\mp@subsup{\operatorname{log}}{a}{}x-\mp@subsup{\operatorname{log}}{a}{}y=\mp@subsup{\operatorname{log}}{a}{}(x/y)\mathrm{ ,
klog}x=\mp@subsup{\operatorname{log}}{a}{}\mp@subsup{k}{}{k}\mathrm{ (including for example k=-1 and k=1/2)
F5 Solve equations of the form a}\mp@subsup{a}{}{x}=
F6 Use logarithmic graphs to estimate parameters in relationships of the form y = ax and y=kb}\mp@subsup{}{}{\textrm{x}}\mathrm{ , given data for }x\mathrm{ and y
F7 Understand and use exponential growth and decay; use in modelling (examples may include the use of e in continuous
compound interest, radioactive decay, drug concentration decay, exponential growth as a model for population growth);
consideration of limitations and refinements of exponential models
```


Exponential Functions

Graph:	Points to notice	Tips
	- Always crosses the y-axis at $1\left(a^{0}=1\right)$ - The x-axis is an asymptote as you can never get a y value of $0\left(a^{x} \neq 0\right)$	If you don't remember what the graph looks like, try substituting a with a number (e.g. use 3^{x}) and find some points. Plot them to get an idea of what the graph looks like.
$y=\mathrm{e}^{x}$	- The graph looks the same as you have just replaced a with e.	Find a few points to see what the graph looks like.

The gradient of $\mathrm{e}^{k x}$

If:

$$
y=\mathrm{e}^{k x}
$$

then:
 gradient function and so this is the gradient of $\mathrm{e}^{k x}$

Summary sheet: Exponentials and logarithms

Logs
What does a log mean?
E.g. $\log _{2} 16$

This is a log with base 2 .
$\log _{2} 16$ means "What power do I raise 2 to, to get 16?" (i.e. $2^{?}=16$)
The answer is 4 (because $2^{4}=16$)
$\therefore \log _{2} 16=4$

You can summarise like this:

$$
\underset{\text { (for } a>0 \text { and } x>0 \text {) }}{\boldsymbol{y}=\log _{\boldsymbol{a}} \boldsymbol{x}} \Leftrightarrow \boldsymbol{x}=\boldsymbol{a}^{\boldsymbol{y}}
$$

This means that "log to the base n " and " n to the power of" are the opposite (inverse) of each other and will undo each other (cancel each other out).

In (the natural log)

In has a base of e, and so In and e are the opposite (inverse) of each other and will undo each other (cancel each other out).

$$
\text { e.g. } e^{\operatorname{in} 7}=7 \quad \text { and } \quad \ln \left(e^{7}\right)=7
$$

The graph of $\ln x$

Graph:	Points to notice
$y=\ln x$	Always crosses the x-axis at 1 (ln1 = 0)
The y-axis is an asymptote as you	
cannot get an answers for $\ln 0$ (try	
it on your calculator, you will get	
an error - you can't raise e to any	
power and get the answer 0)	

Summary sheet: Exponentials and logarithms

The laws of logs

You need to learn, and know how to use, the following laws of logs:
Law
$\log (x)+\log (y)=\log (x y)$
$\log (x)-\log (y)=\log \left(\frac{x}{y}\right)$
$\log \left(x^{k}\right)=k \log (x)$
$\log (1)=0$

Example

$$
\begin{aligned}
& \log (2)+\log (5)=\log (2 \times 5)=\log (10) \\
& \log (12)-\log (3)=\log \left(\frac{12}{3}\right)=\log (4) \\
& \log \left(5^{2}\right)=2 \log (5) \\
& \log _{27} 1=0
\end{aligned}
$$

All of the laws are true for any base (including base e, i.e. In).

Solve equations of the form $\boldsymbol{a}^{\boldsymbol{x}}=\boldsymbol{b}$

To solve this type of equation you need to bring the x down from the power, so you will use the $3^{\text {rd }}$ law:

$$
\log \left(x^{k}\right)=k \log (x)
$$

Step 1: Take the log of both sides.
Step 2: use the $3^{\text {rd }}$ rule to bring the power to the front.
Step 3: Solve the equation as normal.
e.g. Solve the equation: $3^{x-5}=2$

Step 1: Take the log of both sides:

$$
\begin{aligned}
\log \left(3^{x-5}\right) & =\log (2) \\
(x-5) \log 3 & =\log 2 \\
(x-5) & =\frac{\log 2}{\log 3} \\
(x-5) & =0.6309 \\
x & =0.6309+5 \\
\boldsymbol{x} & =\mathbf{5 . 6 3 0 9}
\end{aligned}
$$

Summary sheet: Exponentials and logarithms

Logarithmic Graphs

When you have a relationship of the form $y=k x^{n}$ or $y=a b^{x}$ it can be tricky to find the parameters (k, a and b) from the curve. Taking logs of both sides turns the relationship into a straight line and makes finding the parameters easier.

Original:
Take logs of both sides:
Tidy up using laws of logs:

You now have a straight line
(of the form $y=m x+c$) where:

$$
\begin{aligned}
& y=k x^{n} \\
& \log (y)=\log \left(k x^{n}\right) \\
& \log (y)=\log (k)+\log \left(x^{n}\right) \\
& \log (y)=\log (k)+n \log (x) \\
& \log (y)=n \log (x)+\log (k)
\end{aligned}
$$

$$
\text { gradient }=n
$$

$$
\text { intercept }=\log k
$$

$$
\begin{aligned}
& y=a b^{x} \\
& \log (y)=\log \left(a b^{x}\right) \\
& \log (y)=\log (a)+\log \left(b^{x}\right) \\
& \log (y)=\log (a)+x \log (b) \\
& \log (y)=x \log (b)+\log (a)
\end{aligned}
$$

gradient $=\log b$
intercept $=\log a$

For either of the above you can plot the graph and find the gradient and the intercept.
e.g. you have been given data for x and y and it is thought that the relationship is of the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{n}}$. Verify this and find the approximate values of \boldsymbol{k} and \boldsymbol{n}.
Data:

\boldsymbol{x}	1	2	3	4	5
\boldsymbol{y}	2	2.46	2.78	3.03	3.24

Take logs of each side, as shown above, to get: $\quad \log (y)=n \log (x)+\log (k)$
You need to plot $\log (y)$ against $\log (x)$ so first of all find the values of $\log (y)$ and $\log (x)$:

\boldsymbol{x}	1	2	3	4	5
$\log (\boldsymbol{x})$	0	0.3	0.48	0.6	0.7
\boldsymbol{y}	2	2.46	2.78	3.03	3.24
$\log (\boldsymbol{y})$	0.3	0.39	0.44	0.48	0.51

Now plot the graph of $\log (y)$ against $\log (x)$:

$$
\text { Gradient }(n)=\frac{0.48-0.36}{0.6-0.2}=0.3
$$

Intercept $(\log (k))=0.3$

$$
\therefore k=10^{0.3}=1.99(\approx 2)
$$

You have found that the relationship is approximately:

$$
y=2 x^{0.3}
$$

Summary sheet: Exponentials and logarithms

e.g. you have been given data for x and y and it is thought that the relationship is of the form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{b}^{x}$. Verify this and find the approximate values of \boldsymbol{a} and \boldsymbol{b}.
Data:

\boldsymbol{x}	0	1	2	3	4	5
\boldsymbol{y}	5	1	0.2	0.04	0.008	0.0016

Take logs of each side, as shown above, to get: $\quad \log (y)=x \log (b)+\log (a)$ You need to plot $\log (y)$ against x so first of all find the values of $\log (y)$:

\boldsymbol{x}	0	1	2	3	4	5
\boldsymbol{y}	5	1	0.2	0.04	0.008	0.0016
$\log (\boldsymbol{y})$	0.7	0	-0.7	-1.4	-2.1	-2.8

Now plot the graph of $\log (y)$ against x :

Gradient $(\log (b))=\frac{-1.4-0}{3-1}=-0.7$
$\therefore b=10^{-0.7} \approx 0.2$

Intercept $(\log (a))=0.7$
$\therefore a=10^{0.7}=5.01(\approx 5)$

You have found that the relationship is approximately

$$
y=5 \times 0.2^{x}
$$

