Summary sheet: Integration

H1 Know and use the Fundamental Theorem of Calculus
H2 Integrate x^{n} (excluding $n=-1$), and related sums, differences and constant multiples
H3 Evaluate definite integrals; use a definite integral to find the area under a curve

Notation

Integration questions are usually given as follows:

Means: Integrate the following
with respect to x

The fundamental theorem of calculus

Remember that integration is the reverse of differentiation (they 'undo' each other). The rule for differentiation is: expression X power, then reduce the power by 1 . So integration is the opposite:

$$
\begin{aligned}
& \int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c \\
& \text { and } \int k x^{n} \mathrm{~d} x=\frac{k x^{n+1}}{n+1}+c
\end{aligned}
$$

Remember for each term: power $\mathbf{+ 1}$ then divide by new power.

$$
\begin{aligned}
& \text { e.g. } \int\left(\mathbf{1 5} \boldsymbol{x}^{2}-\mathbf{6 x}+\mathbf{7}\right) \mathrm{d} \boldsymbol{x} \\
&=\left.\begin{array}{r}
\text { Remember to include the } c \text { because } \\
3
\end{array}\right) \frac{6 x^{2}}{2}+7 x+c \\
&=5 x^{3}-3 x^{2}+7 x+c \text { original that disappeared when } \\
& \text { differentiating. }
\end{aligned}
$$

You will only be able to find c if you are given some more information.
e.g. for the above example, when $x=1, y=6$. Find the value of \boldsymbol{c}

You have found that $y=5 x^{3}-3 x^{2}+7 x+c$, so just substitute the given values in to find c.

$$
\begin{aligned}
6 & =5(1)^{3}-3(1)^{2}+7(1)+c \\
6-5+3-7 & =c \\
c & =-3
\end{aligned}
$$

So the final answer is: $y=5 x^{3}-3 x^{2}+7 x-3$

Summary sheet: Integration

Definite integrals

A definite integral has limits. To evaluate a definite integral you integrate as normal then substitute the top limit and the bottom limit and subtract.

$$
[\text { top limit }]-[\text { bottom limit }]
$$

Remember that definite integration is used to find the area under a curve ("Under the curve" means between the curve and the x-axis).
e.g. Find the area enclosed by the curve $y=-x^{2}+7 x-10$ and the lines $x=3$ and $x=5$

Set up the integration:

Notice that you don't need to include the c, because you are going to subtract, so it would
$=\left[-\frac{x^{3}}{3}+\frac{7 x^{2}}{2}-10 x\right]_{3}^{5}$ cancel out anyway.
Integrate:
[top limit] - [bottom limit]

$$
\begin{align*}
& =\left[-\frac{5^{3}}{3}+\frac{7(5)^{2}}{2}-10(5)\right]-\left[-\frac{3^{3}}{3}+\frac{7(3)^{2}}{2}-10(3)\right] \\
& =\left[-\frac{25}{6}\right]-\left[-\frac{15}{2}\right] \\
& =\frac{10}{3} \tag{3.3}
\end{align*}
$$

You have found the area under the curve, between $x=3$ and $x=5$.

Remember:

A positive answer means that the area is above the x-axis and a negative answer means that the area is below the x-axis.

If there is a mixture (above and below) you would need to find each area separately and then add the areas (ignoring the negative sign).
e.g. to find the area enclosed by the curve $y=x^{3}-7 x^{2}+10 x$ and the x-axis:

You would integrate with the limits 0 and 2 then separately integrate with the limits 2 and 5 (expect a negative answer as this area is below the line).

Total area: ignore the negative sign and add the 2 amounts together.
Try it - you should get an area of $\frac{253}{12}$ (approx. 21.1)

