## Summary sheet: Indices and surds

B1 Understand and use the laws of indices for all rational exponents (fraction powers)
B2 Use and manipulate surds, including rationalising the denominator

## Indices (powers)

An index (power) tells you how many times to multiply something by itself:

$$
\text { e.g. } x^{5} \text { means } x \times x \times x \times x \times x
$$

There is a base and a power:


There are a few rules of indices that you need to learn and remember how to use:
Rule

$$
a^{m} \times a^{n}=a^{m+n}
$$

Meaning

To multiply 2 numbers with the same base you add the powers.

Example

$$
5^{3} \times 5^{4}=5^{7}
$$

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

To divide 2 numbers with the same base you subtract the powers.

$$
\frac{3^{7}}{3^{2}}=3^{5}
$$

$$
\left(a^{m}\right)^{n}=a^{m \times n}
$$

To simplify a power inside and outside of a bracket you multiply the powers.
$\left(6^{4}\right)^{3}=6^{12}$

$$
a^{-m}=\frac{1}{a^{m}}
$$

A negative power means "one over" so send everything to the bottom of a fraction.

$$
8^{-5}=\frac{1}{8^{5}}
$$

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}
$$

A fractional power means a root. The bottom of the fraction tells you the root and the top tells you the power.

$$
a^{0}=1
$$

Anything to the power of zero $=1$

$$
57^{0}=1
$$

Finally
Remember that any number to the power of one stays the same: e.g. $72^{1}=72$

And 1 to the power of anything is 1 :
e.g. $1^{15}=1$
$1^{-356}=1$

## Summary sheet: Indices and surds

## Surds (roots)

A surd (root) is the inverse of a power:
e.g. $\sqrt{25}$ means "which number multiplied by itself would give 25 ?" the answer is 5 because $5 \times 5=25$. Remember that a surd can be part rational, e.g. $(3+\sqrt{7})$ has a rational part ( 3 ) and the root part $(\sqrt{7})$.

It is a good idea to remember the first few perfect square numbers so that you can spot them when you are working with surds, ( $\mathbf{1}(1 \times 1), \mathbf{4}(2 \times 2), \mathbf{9}(3 \times 3), \mathbf{1 6}(4 \times 4), \mathbf{2 5}(5 \times 5), \mathbf{3 6}(6 \times 6)$ etc).

## Writing surds in their simplest form

If a square root has a perfect square number as a factor, then it can be simplified.
e.g. $\sqrt{20}$ can be re-written as $\sqrt{4} \times \sqrt{5}$ which simplifies to $2 \sqrt{5}$

Perfect square

## Adding and subtracting surds

Remember to add or subtract like terms (i.e. the rational numbers and the roots (of the same number))
e.g. $(7+3 \sqrt{2})+(8-\sqrt{2})=15+2 \sqrt{2} \quad$ Add rational parts: $(7+8=15)$

Add roots: $(3 \sqrt{2}-1 \sqrt{2}=2 \sqrt{2})$

## Multiplying surds

If there is no rational part then multiplying is easy:

$$
\text { e.g. } \sqrt{3} \times \sqrt{5}=\sqrt{15}
$$

If there is a rational part then multiply out the brackets (either using FOIL (first, outside, inside, last) or the smile - whichever you prefer):


## Rationalising the denominator

You rationalise the denominator to get rid of the surd on the bottom of a fraction. To rationalise the denominator just multiply the top and bottom of the fraction by the bottom of the fraction with the opposite sign in front of the root.
e.g. Simplify $\frac{3+\sqrt{5}}{2-\sqrt{5}}$ by rationalising the denominator.

Remember the rule: multiply the top and bottom of the fraction by the bottom of the fraction with the opposite sign in front of the root.

$$
\frac{3+\sqrt{5}}{2-\sqrt{5}} \times \frac{2+\sqrt{5}}{2+\sqrt{5}}=\frac{6+3 \sqrt{5}+2 \sqrt{5}+\sqrt{5} \sqrt{5}}{4+2 \sqrt{5}-2 \sqrt{5}-\sqrt{5} \sqrt{5}}=\frac{11+5 \sqrt{5}}{-1}=-11-5 \sqrt{5}
$$

Notice these are the same - but the
sign in front of the root has changed.

Changing the sign in front of the root makes the middle parts cancel each other out \& disappear.

