

Section 1: Introduction to vectors

Notes and Examples

These notes contain subsections on

- Vector in magnitude-direction form or component form
- Multiplying a vector by a scalar
- Adding and subtracting vectors
- Equal vectors and position vectors
- <u>Unit vectors</u>

Vectors in magnitude-direction form or component form

A **vector** quantity has both **magnitude** (size) and **direction**. A **scalar** quantity has magnitude only.

Vectors may be written in bold, **a**, or underlined, <u>a</u>, or with an arrow above, \vec{a} . Two vectors are **equal** if they have the same magnitude and direction. You need to be able to write down a vector in two different ways:

• Magnitude-direction form (r, θ)

The angle, θ is measured in an **anticlockwise** direction from the **positive** *x* **axis**.

• Component form

The vector is expressed using the unit vectors \mathbf{i} and \mathbf{j} . \mathbf{i} is a unit vector in the *x* direction. \mathbf{j} is a unit vector in the *y* direction.

a magnitude of 1.

1

The magnitude of a vector given in component form is found using Pythagoras's theorem.

So the vector $\mathbf{c} = a\mathbf{i} + b\mathbf{j}$ has magnitude:

A vector given in magnitude-direction form can be written in component form using the rule:

$$\mathbf{a} = (r, \theta) \Rightarrow \mathbf{a} = \begin{pmatrix} r\cos\theta\\ r\sin\theta \end{pmatrix} = r\cos\theta \mathbf{i} + r\sin\theta \mathbf{j}$$

The following two examples show you how to convert between the two forms.

Example 1

Write the vectors: (i) $(10, 70^{\circ})$ (ii) $(5, 230^{\circ})$ in component form.

Solution

(i) Using the formula
$$\mathbf{a} = (r, \theta) \Rightarrow \mathbf{a} = \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix} = r \cos \theta \mathbf{i} + r \sin \theta \mathbf{j}$$

$$(10, 70^{\circ}) = 10\cos 70^{\circ}\mathbf{i} + 10\sin 70^{\circ}\mathbf{j}$$

= 3.42\mathbf{i} + 9.40\mathbf{j}
(ii) (5, 230^{\circ}) = 5\cos 230^{\circ}\mathbf{i} + 5\sin 230^{\circ}\mathbf{j}
= -3.21\mathbf{i} - 3.83\mathbf{j}

Example 2

Write the vector: (i) $5\mathbf{i} + 3\mathbf{j}$ (ii) $-2\mathbf{i} - 4\mathbf{j}$ in magnitude-direction form.

Ť

Solution

(i) The magnitude of the vector $5\mathbf{i} + 3\mathbf{j}$ is $\sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34}$

Use a sketch to help you find the direction:

The angle θ gives the direction of the vector.

$$\tan \theta = \frac{3}{5} \Longrightarrow \theta = 31.0^{\circ}$$

So $5\mathbf{i} + 3\mathbf{j} = (\sqrt{34}, 31.0^{\circ})$

(ii) The magnitude of the vector -2i - 4j is $\sqrt{(-2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20}$

Use a sketch to help you find the direction:

The angle $\theta + 180^{\circ}$ gives the direction of the vector. $\tan \theta = \frac{4}{2} \Longrightarrow \theta = 63.4^{\circ}$ so the direction is $63.4^{\circ} + 180^{\circ} = 243.4^{\circ}$ So $-2\mathbf{i} - 4\mathbf{j} = (\sqrt{20}, 243.4^{\circ})$

Multiplying a vector by a scalar

To multiply a vector by a scalar (number) simply multiply each of the components by the scalar.

Note:

- when the scalar is positive the direction of the vector remains the same but the length (or magnitude) of the vector increases by the same factor.
- when the scalar is negative the direction of the vector is reversed and again the length (or magnitude) of the vector increase.

Example 3

 $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j}$

- (i) Find 4**a**
- (ii) Find the value of $|\mathbf{a}|$
- (iii) Write down the value of $|4\mathbf{a}|$

Solution

(i)
$$4\mathbf{a} = 4(2\mathbf{i} - 3\mathbf{j}) = 8\mathbf{i} - 12\mathbf{j}$$

(ii) $|\mathbf{a}| = \sqrt{2^2 + (-3)^2} = \sqrt{4+9} = \sqrt{13}$
(iii) $|4\mathbf{a}| = 4|\mathbf{a}| = 4\sqrt{13}$

Adding and subtracting vectors

To add/subtract vectors simply multiply add/subtract the **i** components and then the **j** components. Adding two or more vectors is called finding the **resultant**.

Example 5

(i) Find the resultant of $(5\mathbf{i} - 7\mathbf{j})$ and $(-3\mathbf{i} + 2\mathbf{j})$

(ii) Work out $\begin{pmatrix} 9\\-8 \end{pmatrix} - \begin{pmatrix} 5\\-3 \end{pmatrix}$

Solution

(i) To find the resultant you need to add the vectors. $(5\mathbf{i} - 7\mathbf{j}) + (-3\mathbf{i} + 2\mathbf{j}) = 2\mathbf{i} - 5\mathbf{j}$

You can see this more clearly in this diagram:

 $\begin{pmatrix} 9 \\ -8 \end{pmatrix} - \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$ (ii)

The Explore resource *Adding and subtracting vectors* demonstrates the geometrical interpretation of vector addition and subtraction.

Equal vectors and position vectors

Two vectors are **equal** if they have the same magnitude and direction. They do not have to be in the same place!

Example 6

The diagram shows a parallelogram ABCD.

(b)
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

 $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$
Also $\overrightarrow{AC} = 2\overrightarrow{AE} = 2\mathbf{b}$

A **position vector** is a vector which starts at the origin. So if two position vectors are equal they will be in the same place! For example the point A (5, -3) has the position vector $\overrightarrow{OA} = 5\mathbf{i} - 3\mathbf{j}$.

You need to know that

- $\overrightarrow{AO} = -\overrightarrow{OA}$
- $\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}$ So $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$
- The mid-point, M, has position vector: $\overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$

You can see the reason for these results more clearly in this diagram:

Example 7

The points A and B have coordinates (2, 4) and (5, -1) respectively.

- (i) Write down the position vectors \overrightarrow{OA} and \overrightarrow{OB} .
- (ii) Find the vector \overrightarrow{AB} .
- (iii) Find the position vector of the mid-point, M of AB.

Solution
(i)
$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

 $\overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$

(ii)
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$

(iii)
$$\overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$$

= $\binom{2}{4} + \frac{1}{2}\binom{3}{-5} = \binom{2}{4} + \binom{1\frac{1}{2}}{-2\frac{1}{2}} = \binom{3\frac{1}{2}}{1\frac{1}{2}}$

Unit vectors

A **unit vector** has a magnitude of 1. **i** and **j** are examples of unit vectors.

You need to be able to find a unit vector which has the same direction as a given vector, **a**.

~

You do this by:

- Finding the magnitude of the vector, $|\mathbf{a}|$
- Dividing **a** by its magnitude, $|\mathbf{a}|$

Say 'a hat'.

The unit vector of \mathbf{a} is written $\hat{\mathbf{a}}$.

Example 8

Find the unit vector in the direction of $\mathbf{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

Solution

$$|\mathbf{a}| = \sqrt{2^2 + (-3)^2} = \sqrt{4+9} = \sqrt{13}$$

 $\hat{\mathbf{a}} = \frac{2}{\sqrt{13}}\mathbf{i} - \frac{3}{\sqrt{13}}\mathbf{j}$