Section 1: Introduction to vectors

Notes and Examples

These notes contain subsections on

- Vector in magnitude-direction form or component form
- Multiplying a vector by a scalar
- Adding and subtracting vectors
- Equal vectors and position vectors
- Unit vectors

Vectors in magnitude-direction form or component form

A vector quantity has both magnitude (size) and direction. A scalar quantity has magnitude only.
Vectors may be written in bold, a, or underlined, a, or with an arrow above, \vec{a}.
Two vectors are equal if they have the same magnitude and direction.
You need to be able to write down a vector in two different ways:

- Magnitude-direction form (r, θ)

The angle, θ is measured in an anticlockwise direction from the positive \boldsymbol{x} axis.

- Component form

The vector is expressed using the unit vectors \mathbf{i} and \mathbf{j}. \mathbf{i} is a unit vector in the x direction. j is a unit vector in the y direction.

EdExcel AS Maths Vectors 1 Notes and Examples

The magnitude of a vector given in component form is found using Pythagoras's theorem.
So the vector $\mathbf{c}=a \mathbf{i}+b \mathbf{j}$ has magnitude:

$$
|\mathbf{c}|=\sqrt{a^{2}+b^{2}}
$$

A vector given in magnitude-direction form can be written in component form using the rule:

$$
\mathbf{a}=(r, \theta) \Rightarrow \mathbf{a}=\binom{r \cos \theta}{r \sin \theta}=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}
$$

The following two examples show you how to convert between the two forms.

Example 1

Write the vectors:
(i) $\left(10,70^{\circ}\right)$
(ii) $\left(5,230^{\circ}\right)$
in component form.

Solution

(i) Using the formula $\mathbf{a}=(r, \theta) \Rightarrow \mathbf{a}=\binom{r \cos \theta}{r \sin \theta}=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}$
$\left(10,70^{\circ}\right)=10 \cos 70^{\circ} \mathbf{i}+10 \sin 70^{\circ} \mathbf{j}$

$$
=3.42 \mathbf{i}+9.40 \mathbf{j}
$$

(ii) $\left(5,230^{\circ}\right)=5 \cos 230^{\circ} \mathbf{i}+5 \sin 230^{\circ} \mathbf{j}$

$$
=-3.21 \mathbf{i}-3.83 \mathbf{j}
$$

Example 2

Write the vector:
(i) $5 \mathbf{i}+3 \mathbf{j}$
(ii) $\quad-2 \mathbf{i}-4 \mathbf{j}$
in magnitude-direction form.

Solution

(i) The magnitude of the vector $5 \mathbf{i}+3 \mathbf{j}$ is $\sqrt{5^{2}+3^{2}}=\sqrt{25+9}=\sqrt{34}$

Use a sketch to help you find the direction:

The angle θ gives the direction of the vector.

EdExcel AS Maths Vectors 1 Notes and Examples

$\tan \theta=\frac{3}{5} \Rightarrow \theta=31.0^{\circ}$
So $5 \mathbf{i}+3 \mathbf{j}=\left(\sqrt{34}, 31.0^{\circ}\right)$
(ii) The magnitude of the vector $-2 \mathbf{i}-4 \mathbf{j}$ is $\sqrt{(-2)^{2}+(-4)^{2}}=\sqrt{4+16}=\sqrt{20}$

Use a sketch to help you find the direction:

The angle $\theta+180^{\circ}$ gives the direction of the vector.
$\tan \theta=\frac{4}{2} \Rightarrow \theta=63.4^{\circ}$ so the direction is $63.4^{\circ}+180^{\circ}=243.4^{\circ}$
So $-2 \mathbf{i}-4 \mathbf{j}=\left(\sqrt{20}, 243.4^{\circ}\right)$

Multiplying a vector by a scalar

To multiply a vector by a scalar (number) simply multiply each of the components by the scalar.

Note:

- when the scalar is positive the direction of the vector remains the same but the length (or magnitude) of the vector increases by the same factor.
- when the scalar is negative the direction of the vector is reversed and again the length (or magnitude) of the vector increase.

Example 3
$\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}$
(i) Find 4a
(ii) Find the value of $|\mathbf{a}|$
(iii) Write down the value of $|4 \mathbf{a}|$

Solution

(i) $4 \mathbf{a}=4(2 \mathbf{i}-3 \mathbf{j})=8 \mathbf{i}-12 \mathbf{j}$
(ii) $|\mathbf{a}|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13}$
(iii) $|4 \mathbf{a}|=4|\mathbf{a}|=4 \sqrt{13}$

EdExcel AS Maths Vectors 1 Notes and Examples

Adding and subtracting vectors

To add/subtract vectors simply multiply add/subtract the i components and then the \mathbf{j} components.
Adding two or more vectors is called finding the resultant.

Example 5
(i) Find the resultant of $(5 \mathbf{i}-7 \mathbf{j})$ and $(-3 \mathbf{i}+2 \mathbf{j})$
(ii) Work out $\binom{9}{-8}-\binom{5}{-3}$

Solution

(i) To find the resultant you need to add the vectors.
$(5 \mathbf{i}-7 \mathbf{j})+(-3 \mathbf{i}+2 \mathbf{j})=2 \mathbf{i}-5 \mathbf{j}$
You can see this more clearly in this diagram:

(ii) $\binom{9}{-8}-\binom{5}{-3}=\binom{4}{-5}$

The Explore resource Adding and subtracting vectors demonstrates the geometrical interpretation of vector addition and subtraction.

Equal vectors and position vectors

Two vectors are equal if they have the same magnitude and direction.
They do not have to be in the same place!

EdExcel AS Maths Vectors 1 Notes and Examples

Example 6

The diagram shows a parallelogram ABCD .

$\overrightarrow{\mathrm{DA}}=\mathbf{a}$
$\overrightarrow{\mathrm{AE}}=\mathbf{b}$
$\overrightarrow{\mathrm{AB}}=\mathbf{c}$
(a) Find in terms of \mathbf{a}, \mathbf{b} and \mathbf{c} the vectors:
(i) $\overrightarrow{\mathrm{CB}}$
(ii) $\overrightarrow{\mathrm{BC}}$
(iii) $\overrightarrow{\mathrm{BD}}$.
(b) Find two equivalent expressions for $\overrightarrow{\mathrm{AC}}$.

Solution

(a) (i) $\overrightarrow{\mathrm{CB}}=\overrightarrow{\mathrm{DA}}=\mathbf{a}$
(ii) $\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CB}}=-$ a
(iii) $\overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AD}}$

$$
\overrightarrow{\mathrm{BD}}=-\mathbf{c}-\mathbf{a}
$$

(b) $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
$\overrightarrow{\mathrm{AC}}=\mathbf{c}-\mathbf{a}$
Also $\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{AE}}=2 \mathbf{b}$

A position vector is a vector which starts at the origin.
So if two position vectors are equal they will be in the same place!
For example the point $\mathrm{A}(5,-3)$ has the position vector $\overrightarrow{\mathrm{OA}}=5 \mathbf{i}-3 \mathbf{j}$.

You need to know that

- $\overrightarrow{\mathrm{AO}}=-\overrightarrow{\mathrm{OA}}$
- $\overrightarrow{\mathrm{AB}}=-\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$

So $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$

- The mid-point, M , has position vector:

$$
\overrightarrow{\mathrm{OM}}=\overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{AB}}
$$

You can see the reason for these results more clearly in this diagram:

EdExcel AS Maths Vectors 1 Notes and Examples

Example 7

The points A and B have coordinates $(2,4)$ and $(5,-1)$ respectively.
(i) Write down the position vectors $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$.
(ii) Find the vector $\overrightarrow{\mathrm{AB}}$.
(iii) Find the position vector of the mid-point, M of $A B$.

Solution

(i) $\overrightarrow{\mathrm{OA}}=\binom{2}{4}$

$$
\overrightarrow{\mathrm{OB}}=\binom{5}{-1}
$$

(ii) $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=\binom{5}{-1}-\binom{2}{4}=\binom{3}{-5}$
(iii) $\overrightarrow{\mathrm{OM}}=\overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{AB}}$

$$
=\binom{2}{4}+\frac{1}{2}\binom{3}{-5}=\binom{2}{4}+\binom{1 \frac{1}{2}}{-2 \frac{1}{2}}=\binom{3 \frac{1}{2}}{1 \frac{1}{2}}
$$

Unit vectors

A unit vector has a magnitude of 1 .
\mathbf{i} and \mathbf{j} are examples of unit vectors.
You need to be able to find a unit vector which has the same direction as a given vector, a.
You do this by:

- Finding the magnitude of the vector, $|\mathbf{a}|$
- Dividing a by its magnitude, $|\mathbf{a}|$

EdExcel AS Maths Vectors 1 Notes and Examples

Example 8
Find the unit vector in the direction of $\mathbf{a}=\binom{2}{-3}$
Solution
$|\mathbf{a}|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13}$
$\hat{\mathbf{a}}=\frac{2}{\sqrt{13}} \mathbf{i}-\frac{3}{\sqrt{13}} \mathbf{j}$

