

Section 1: Surds

Exercise level 2

Do not use a calculator in this exercise.

- 1. Write these in terms of the simplest possible surd. (i) $\sqrt{6} \times \sqrt{27}$ (ii) $\sqrt{12} \times \sqrt{15}$ (iii) $\sqrt{10} \times \sqrt{24} \times \sqrt{15}$
- 2. Multiply out the brackets and simplify as far as possible. (i) $(\sqrt{2}+2\sqrt{3})(5\sqrt{2}-\sqrt{3})$ (ii) $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$ (iii) $(\sqrt{2}-\sqrt{8})^2$ (iv) $(3+\sqrt{3})(3-\sqrt{3})$ (v) $(1+2\sqrt{3}-\sqrt{5})^2$
- 3. Rationalise the denominators of the following.

(i)	$\frac{1-\sqrt{3}}{2-\sqrt{3}}$	(ii)	$\frac{1+2\sqrt{5}}{3-\sqrt{5}}$
/ ···	$1 + \sqrt{2}$	<i>.</i>	$\sqrt{6} + \sqrt{3}$

(iii)
$$\frac{1+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$
 (iv) $\frac{\sqrt{6}+\sqrt{3}}{\sqrt{6}-\sqrt{3}}$

4. Express each of the following expressions as a single rational fraction, leaving a rational denominator.

(i)
$$\frac{2}{\sqrt{7}} + \frac{3}{\sqrt{2}}$$
 (ii) $\frac{1}{3-\sqrt{2}} + \frac{2}{2-\sqrt{3}}$
(iii) $\frac{3}{\sqrt{x}} - \frac{\sqrt{x}}{4}$ (iv) $\frac{1}{x+\sqrt{y}} + \frac{1}{x-\sqrt{y}}$

