Edexcel AS Mathematics Polynomials

Section 2: Dividing and factorising polynomials

Notes and Examples

These notes contain subsections on

- Dividing polynomials
- The factor theorem

Dividing polynomials

When you divide one polynomial by another, it may divide exactly, or there may be a remainder, just as in arithmetic.

For example: $\quad 26 \div 6=4$ remainder 2
You could rewrite this statement as:

$$
26=6 \times 4+2
$$

The examples you will meet will usually involve dividing a polynomial by a linear expression which is a factor of the polynomial, so there is no remainder.

When you divide a polynomial by a linear expression, the quotient is of order one less than the dividend (e.g. for a quartic, the quotient is cubic)

So

$$
\frac{\text { cubic polynomial }}{\text { linear expression }}=\text { quadratic expression }
$$

which means that
There are several methods that you can use to divide one polynomial by another. Two are shown in the example below.

Example 1

Divide $2 x^{3}+3 x^{2}+x+6$ by $x+2$

Solution

Method 1: inspection
$2 x^{3}+3 x^{2}+x+6=(x+2) \times$ quadratic expression
$2 x^{3}+3 x^{2}+x+6=(x+2)\left(2 x^{2}+\ldots . .+\ldots ..\right)$
$2 x^{3}+3 x^{2}+x+6=(x+2)\left(2 x^{2}+\ldots . .+3\right)$
$2 x^{3}+3 x^{2}+x+6=(x+2)\left(2 x^{2}-x+3\right)$
So the quotient is $2 x^{2}-x+3$.

When you divide a cubic expression by a linear expression, as in this example, the quotient is a quadratic expression.

Edexcel AS Maths Polynomials 2 Notes and Examples

It can be quite difficult to understand what is going on in algebraic long division. The key is to realise that division is equivalent to repeated subtraction - for example, if you want to divide 2688 by 21 , you could do it by repeatedly subtracting 21 and keeping a count of how many times you have done it. This would of course take a long time. So long division speeds up this process, by subtracting multiples of 21 .

In algebraic division, you are doing much the same thing. In the example above, you are repeatedly subtracting $x+2$. In the first step, you are subtracting $2 x^{2}$ lots of $x+2$ from the original cubic, i.e. you are subtracting $2 x^{3}+4 x$ from $2 x^{3}+3 x^{2}+x+6$. This eliminates the term in x^{3}. After you have done the subtraction you are left with $-x^{2}+x+6$ (the +6 isn't usually written in the division, just as the zeros aren't usually written in the numerical long division). So you then subtract $-x$ lots of $x+2$ from $-x^{2}+x+6$, and so on.

The factor theorem

If $(x-a)$ is a factor of $\mathrm{f}(x)$, then $\mathrm{f}(a)=0$ and $x=a$ is a root of the equation $\mathrm{f}(x)=0$. Conversely, if $\mathrm{f}(a)=0$, then $(x-a)$ is a factor of $\mathrm{f}(x)$.

The factor theorem probably won't come as any great surprise to you. After all, you already know that you can solve some quadratics by factorising them.

Edexcel AS Maths Polynomials 2 Notes and Examples

egg. to solve the quadratic equation

$$
\begin{aligned}
& x^{2}+3 x-10=0 \\
& (x+5)(x-2)=0 \\
& x=-5 \text { and } x=2
\end{aligned}
$$ you factorise:

and deduce the solutions

Clearly, for $\mathrm{f}(x)=x^{2}+3 x-10, \mathrm{f}(-5)=0$ and $\mathrm{f}(2)=0$.
$(x+5)$ is a factor of $\mathrm{f}(x) \Leftrightarrow \mathrm{f}(-5)=0$
$(x-2)$ is a factor of $\mathrm{f}(x) \Leftrightarrow \mathrm{f}(2)=0$
The factor theorem simply extends this idea to other polynomials such as cubics, and provides a method for solving cubics and higher polynomials.

Example 2

(i) Solve the equation $x^{3}+2 x^{2}-5 x-6=0$
(ii) Sketch the graph of $y=x^{3}+2 x^{2}-5 x-6$

The first step is to find one solution by trial and error.
If there is an integer solution $x=a$, then by the factor theorem $(x-a)$ must be a factor of $x^{3}+2 x^{2}-5 x-6$. So a must be a factor of 6 . a could therefore be $1,-1,2,-2,3,-3,6$ or -6 .

Let $\mathrm{f}(x)=x^{3}+2 x^{2}-5 x-6$

$\mathrm{f}(1)=1^{3}+2 \times 1^{2}-5 \times 1-6$
$=1+2-5-6 \neq 0$
$\mathrm{f}(-1)=(-1)^{3}+2 \times(-1)^{2}-5 \times(-1)-6$

$$
=-1+2+5-6=0
$$

$\mathrm{f}(-1)=0$ so by the factor theorem $x+1$ is a factor of $\mathrm{f}(x)$

$$
x^{3}+2 x^{2}-5 x-6=(x+1) \times \text { quadratic factor }
$$

$$
x^{3}+2 x^{2}-5 x-6=(x+1)\left(x^{2}+x-6\right)
$$

$x^{3}+2 x^{2}-5 x-6=0$
$(x+1)\left(x^{2}+x-6\right)=0$ $(x+1)(x+3)(x-2)=0$

The roots of the equation are $x=-1, x=-3$ and $x=2$.

Edexcel AS Maths Polynomials 2 Notes and Examples

(ii) Part (i) shows that the graph of $y=x^{3}+2 x^{2}-5 x-6$ crosses the x-axis at $(-3,0)$, $(-1,0)$ and $(2,0)$. By putting $x=0$ you can see that it crosses the y-axis at $(0,-6)$. This information allows you to sketch the graph.

Example 3

$\mathrm{f}(x)=2 x^{3}+p x^{2}+5 x-6$ has a factor $x-2$.
Find the value of p and hence factorise $\mathrm{f}(x)$ as far as possible.

Solution

$x-2$ is a factor of $\mathrm{f}(x) \Leftrightarrow \mathrm{f}(2)=0$
$\mathrm{f}(2)=16+4 p+10-6$
$=20+4 p$
$20+4 p=0 \Rightarrow p=-5$

$$
\begin{aligned}
\mathrm{f}(x) & =2 x^{3}-5 x^{2}+5 x-6 \\
& =(x-2)\left(2 x^{2}-x+3\right)
\end{aligned}
$$

The discriminant of the quadratic factor is $(-1)^{2}-4 \times 2 \times 3=1-24=-23$ As this is negative, the quadratic factor cannot be factorised further.

