Edexcel AS Mathematics Graphs and transformations

Section 2: Transformations of graphs

Exercise level 2

Do not use a calculator or graph-drawing package for this exercise.

1. The diagram shows the graph of y = f(x), which has a maximum point at (0, 1).

Sketch the following graphs, giving the coordinates of the maximum point in each case.

(i) $y = f(x - 2)$	(ii)	y = f(x + 3)
(iii)y = f(x) + 1	(iv)	y = f(x) - 2
(v) $y = f(x + 1) - 3$	(vi)	y = f(2x)
(vii) $y = 3f(x)$	(viii)	$y = f\left(\frac{1}{2}x\right)$

- 2. Find the equation of each new graph when the graph of $y = x^2 x + 1$ undergoes each of the following transformations (starting with the original graph each time).
 - (i) Translation through $\begin{pmatrix} 2\\0 \end{pmatrix}$ (ii) Translation through $\begin{pmatrix} 0\\-1 \end{pmatrix}$ (iii) Translation through $\begin{pmatrix} -1\\2 \end{pmatrix}$
 - (iv) One-way stretch scale factor 3 parallel to the y axis
 - (v) One-way stretch scale factor $\frac{1}{2}$ parallel to the *x* axis.
 - (vi) Reflection in the *x*-axis
 - (vii) Reflection in the y-axis
- 3. State the transformation that must be applied to the graph of $y = x^n$ to obtain the graph of
 - (i) $y = x^n 4$
 - (ii) $y = (x-3)^n$
 - (iii) $y = 2x^n$
 - (iv) $y = (x+2)^n 3$
 - (v) $y = -x^n$

integral

Edexcel AS Mathematics Graphs and transformations

4. The graph of y = h(x) is shown below.

On separate axes draw sketch graphs of the following:

- (i) y = h(x) + 1
- (ii) y = 2h(x)
- (iii) y = h(2x)
- (iv) y = h(x+2)
- (v) y = h(x-1)
- (vi) y = h(-x)
- 5. Sketch each of the following pairs of curves on the same axes.
 - (i) $y = \cos x$ and $y = -2\cos x$
 - (ii) $y = \sin x$ and $y = \sin(x+90^\circ)$
 - (iii) $y = \tan x$ and $y = \tan\left(\frac{1}{2}x\right)$
- 6. Sketch each of the following curves, showing the asymptotes and the points where the curves cross the coordinate axes.

(i)
$$y = \frac{1}{x-1}$$

(ii)
$$y = \frac{1}{x} + 2$$

(iii)
$$y = -\frac{1}{x^2}$$

(iv)
$$y = \frac{1}{(x+2)^2}$$