Edexcel AS Mathematics Graphs and transformations

Section 2: Transformations of graphs

Exercise level 2

Do not use a calculator or graph-drawing package for this exercise.

1. The diagram shows the graph of $y=\mathrm{f}(x)$, which has a maximum point at $(0,1)$.

Sketch the following graphs, giving the coordinates of the maximum point in each case.
(i) $y=\mathrm{f}(x-2)$
(ii) $y=\mathrm{f}(x+3)$
(iii) $y=\mathrm{f}(x)+1$
(iv) $y=\mathrm{f}(x)-2$
(v) $y=\mathrm{f}(x+1)-3$
(vi) $y=\mathrm{f}(2 x)$
(vii) $y=3 \mathrm{f}(x)$
(viii) $y=\mathrm{f}\left(\frac{1}{2} x\right)$
2. Find the equation of each new graph when the graph of $y=x^{2}-x+1$ undergoes each of the following transformations (starting with the original graph each time).
(i) Translation through $\binom{2}{0}$ (ii) \quad Translation through $\binom{0}{-1}$
(iii) Translation through $\binom{-1}{2}$
(iv) One-way stretch scale factor 3 parallel to the y axis
(v) One-way stretch scale factor $\frac{1}{2}$ parallel to the x axis.
(vi) Reflection in the x-axis
(vii) Reflection in the y-axis
3. State the transformation that must be applied to the graph of $y=x^{n}$ to obtain the graph of
(i) $y=x^{n}-4$
(ii) $y=(x-3)^{n}$
(iii) $y=2 x^{n}$
(iv) $y=(x+2)^{n}-3$
(v) $y=-x^{n}$

Edexcel AS Mathematics Graphs and transformations

4. The graph of $y=\mathrm{h}(x)$ is shown below.

On separate axes draw sketch graphs of the following:
(i) $y=\mathrm{h}(x)+1$
(ii) $y=2 \mathrm{~h}(x)$
(iii) $y=\mathrm{h}(2 x)$
(iv) $y=\mathrm{h}(x+2)$
(v) $y=\mathrm{h}(x-1)$
(vi) $y=\mathrm{h}(-x)$
5. Sketch each of the following pairs of curves on the same axes.
(i) $y=\cos x$ and $y=-2 \cos x$
(ii) $y=\sin x$ and $y=\sin \left(x+90^{\circ}\right)$
(iii) $y=\tan x$ and $y=\tan \left(\frac{1}{2} x\right)$
6. Sketch each of the following curves, showing the asymptotes and the points where the curves cross the coordinate axes.
(i) $y=\frac{1}{x-1}$
(ii) $y=\frac{1}{x}+2$
(iii) $y=-\frac{1}{x^{2}}$
(iv) $y=\frac{1}{(x+2)^{2}}$

