Edexcel AS Mathematics Integration

Section 3: Further integration

Notes and Examples

These notes contain subsections on

- Integrating $k x^{n}$ for negative and fractional n
- Applications of integration

Integrating $\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{n}}$ for negative and fractional \boldsymbol{n}

In Section 1 you saw that the integral of x^{n}, where n is a positive integer, is given by

$$
\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}+c \quad \text { where } c \text { is an arbitrary constant }
$$

In fact this formula is true not only when n is a positive integer, but for all real values of n, including negative numbers and fractions, except for $n=-1$.

The formula does not work for $n=-1$, since this would give a denominator of 0 . There is a different way to integrate $\frac{1}{x}$, which is covered in later in A level Mathematics.

Example 1
Find the following indefinite integrals
(i) $\quad \int \sqrt{x} \mathrm{~d} x$
(ii) $\int \frac{1}{x^{3}} \mathrm{~d} x$
(iii) $\int\left(\frac{2}{x^{2}}-\frac{3}{\sqrt{x}}\right) \mathrm{d} x$

Solution
(i) $\int \sqrt{x} \mathrm{~d} x=\int x^{\frac{1}{2}} \mathrm{~d} x$

$$
\begin{aligned}
r & =\int x^{2} \mathrm{~d} x \\
& =\frac{2}{3} x^{\frac{3}{2}}+c
\end{aligned} \ll
$$

(ii) $\quad \int \frac{1}{x^{3}} \mathrm{~d} x=\int x^{-3} \mathrm{~d} x$

Edexcel AS Maths Integration 3 Notes and Examples

(iii)

$$
\begin{aligned}
\int\left(\frac{2}{x^{2}}-\frac{3}{\sqrt{x}}\right) \mathrm{d} x & =\int\left(2 x^{-2}-3 x^{-\frac{1}{2}}\right) \mathrm{d} x \\
& =-2 x^{-1}-3 \times 2 x^{\frac{1}{2}}+c \\
& =-\frac{2}{x}-6 \sqrt{x}+c
\end{aligned}
$$

Example 2

Find the following definite integrals.
(i) $\int_{1}^{2}\left(\frac{4 x-1}{x^{4}}\right) \mathrm{d} x$
(ii) $\int_{1}^{4}(3-x) \sqrt{x} d x$

Solution
(i) $\quad \int_{1}^{2}\left(\frac{4 x-1}{x^{4}}\right) \mathrm{d} x=\int_{1}^{2}\left(4 x^{-3}-x^{-4}\right) \mathrm{d} x$

$$
\begin{aligned}
& =\left[4 \times-\frac{1}{2} x^{-2}+\frac{1}{3} x^{-3}\right]_{1}^{2} \\
& =\left[-\frac{2}{x^{2}}+\frac{1}{3 x^{3}}\right]_{1}^{2} \\
& =\left(-\frac{1}{2}+\frac{1}{24}\right)-\left(-2+\frac{1}{3}\right) c \\
& =\frac{29}{24}
\end{aligned}
$$

(ii) $\quad \int_{1}^{4}(3-x) \sqrt{x} \mathrm{~d} x=\int_{1}^{4}\left(3 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right) \mathrm{d} x$

Applications of integration

Now that you can integrate a wider range of functions, you can also solve problems which involve integrating these functions, such as finding functions given their gradient function, and finding the area under a curve.

Edexcel AS Maths Integration 3 Notes and Examples

Example 3
The gradient function of a curve is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{x}-\frac{1}{\sqrt{x}}
$$

and the curve passes through the point $(4,9)$
Find the equation of the curve.

Solution

$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{x}-\frac{1}{\sqrt{x}} \Rightarrow y=\int\left(3 \sqrt{x}-\frac{1}{\sqrt{x}}\right) \mathrm{d} x$

$$
\begin{aligned}
& =\left(\int 3 x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right) \mathrm{d} x \\
& =3 \times \frac{2}{3} x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+c \\
& =2 x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+c
\end{aligned}
$$

When $x=4, y=9 \Rightarrow 9=2 \times 8-2 \times 2+c$

$$
\begin{aligned}
& \Rightarrow c=9-16+4 \\
& \Rightarrow c=-3
\end{aligned}
$$

The equation of the curve is $y=2 x^{\frac{3}{2}}-2 x^{\frac{1}{2}}-3$

The next two examples are about finding the area under a curve.

Example 4

Find the area under the graph $y=1+\sqrt{x}$ between $x=0$ and $x=4$.

Solution

Area under graph $=\int_{0}^{4}(1+\sqrt{x}) \mathrm{d} x$

$$
\begin{aligned}
& =\int_{0}^{4}\left(1+x^{\frac{1}{2}}\right) \mathrm{d} x \\
& =\left[x+\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{4} \\
& =\left(4+\frac{2}{3} \times 8\right)-0 \\
& =\frac{28}{3}
\end{aligned}
$$

Edexcel AS Maths Integration 3 Notes and Examples

Example 5
The diagram shows the graph of $y=\frac{1}{x^{2}}-1$ and the line $y=3$.

(i) Find the coordinates of points P and Q .
(ii) Find the area bounded by the curve, the line $y=3$ and the x axis.

Solution

(i) At P and $\mathrm{Q}, \frac{1}{x^{2}}-1=3 \Rightarrow \frac{1}{x^{2}}=4 \Rightarrow x^{2}=\frac{1}{4} \Rightarrow x= \pm \frac{1}{2}$.

The coordinates of P are $\left(-\frac{1}{2}, 3\right)$ and the coordinates of Q are $\left(\frac{1}{2}, 3\right)$.
(ii)

Area C is given by $\int_{\frac{1}{2}}^{1}\left(\frac{1}{x^{2}}-1\right) \mathrm{d} x=\left[-\frac{1}{x}-x\right]_{\frac{1}{2}}^{1}$

$$
\begin{aligned}
& =(-1-1)-\left(-2-\frac{1}{2}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

By symmetry area A is also $\frac{1}{2}$.
Area B $=3 \times 1=3$

Total area $=\frac{1}{2}+\frac{1}{2}+3=4$.

