

Section 3: Further integration

Notes and Examples

These notes contain subsections on

- Integrating kxⁿ for negative and fractional n
- Applications of integration

Integrating *kxⁿ* for negative and fractional *n*

In Section 1 you saw that the integral of x^n , where *n* is a positive integer, is given by

$$\int x^n \mathrm{d}x = \frac{1}{n+1} x^{n+1} + c \qquad \qquad \text{W}$$

where c is an arbitrary constant

In fact this formula is true not only when *n* is a positive integer, but for all real values of *n*, including negative numbers and fractions, except for n = -1.

The formula does not work for n = -1, since this would give a denominator of 0. There is a different way to integrate $\frac{1}{x}$, which is covered in later in A level Mathematics.

Example 1

Find the following indefinite integrals (i) $\int \sqrt{x} dx$ (ii) $\int \frac{1}{x^3} dx$ (iii) $\int \left(\frac{2}{x^2} - \frac{3}{\sqrt{x}}\right) dx$ Solution (i) $\int \sqrt{x} dx = \int x^{\frac{1}{2}} dx$ $= \frac{2}{3} x^{\frac{3}{2}} + c$ (ii) $\int \frac{1}{x^3} dx = \int x^{-3} dx$ $= -\frac{1}{2} x^{-2} + c$

Edexcel AS Maths Integration 3 Notes and Examples

(iii)
$$\int \left(\frac{2}{x^2} - \frac{3}{\sqrt{x}}\right) dx = \int \left(2x^{-2} - 3x^{-\frac{1}{2}}\right) dx$$

= $-2x^{-1} - 3 \times 2x^{\frac{1}{2}} + c$
= $-\frac{2}{x} - 6\sqrt{x} + c$
(iii) $\int \left(\frac{2}{x^2} - \frac{3}{\sqrt{x}}\right) dx = \int \left(2x^{-2} - 3x^{-\frac{1}{2}}\right) dx$
= $-2x^{-1} - 3 \times 2x^{\frac{1}{2}} + c$
= $-\frac{2}{x} - 6\sqrt{x} + c$
(ivide by $\frac{1}{2}$, i.e. multiply by 2.

-

Example 2 Find the following definite integrals.

(i)
$$\int_{1}^{2} \left(\frac{4x-1}{x^{4}}\right) dx$$

(ii)
$$\int_{1}^{4} (3-x)\sqrt{x} dx$$

Solution

(i)
$$\int_{1}^{2} \left(\frac{4x-1}{x^{4}}\right) dx = \int_{1}^{2} \left(4x^{-3} - x^{-4}\right) dx$$
$$= \left[4 \times -\frac{1}{2}x^{-2} + \frac{1}{3}x^{-3}\right]_{1}^{2}$$
Substitute $x = 2$ in first bracket
and $x = 1$ in second bracket
 $= \left(-\frac{1}{2} + \frac{1}{24}\right) - \left(-2 + \frac{1}{3}\right)$
 $= \frac{29}{24}$
(ii) $\int_{1}^{4} (3-x)\sqrt{x} dx = \int_{1}^{4} \left(3x^{\frac{1}{2}} - x^{\frac{3}{2}}\right) dx$

$$= \begin{bmatrix} 3 \times \frac{2}{3} x^{\frac{3}{2}} - \frac{2}{5} x^{\frac{5}{2}} \end{bmatrix}_{1}^{4}$$

$$= \begin{bmatrix} 2x\sqrt{x} - \frac{2}{5} x^{2}\sqrt{x} \end{bmatrix}_{1}^{4}$$

$$= (2 \times 4 \times 2 - \frac{2}{5} \times 16 \times 2) - (2 \times 1 \times 1 - \frac{2}{5} \times 1 \times 1)$$

$$= \frac{8}{5}$$

Substitute $x = 4$ in first bracket
and $x = 1$ in second bracket

Applications of integration

Now that you can integrate a wider range of functions, you can also solve problems which involve integrating these functions, such as finding functions given their gradient function, and finding the area under a curve.

Edexcel AS Maths Integration 3 Notes and Examples

Example 3

The gradient function of a curve is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{x} - \frac{1}{\sqrt{x}}$$

and the curve passes through the point (4, 9) Find the equation of the curve.

Solution

$$\frac{dy}{dx} = 3\sqrt{x} - \frac{1}{\sqrt{x}} \Rightarrow y = \int \left(3\sqrt{x} - \frac{1}{\sqrt{x}} \right) dx$$

$$= \left(\int 3x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right) dx$$

$$= 3 \times \frac{2}{3} x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + c$$

$$= 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + c$$
When $x = 4, y = 9 \Rightarrow 9 = 2 \times 8 - 2 \times 2 + c$

$$\Rightarrow c = 9 - 16 + 4$$

$$\Rightarrow c = -3$$

The equation of the curve is $y = 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}} - 3$

The next two examples are about finding the area under a curve.

Example 4

Find the area under the graph $y = 1 + \sqrt{x}$ between x = 0 and x = 4.

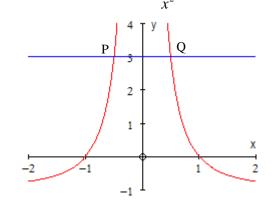
Solution

Area under graph
$$= \int_0^4 \left(1 + \sqrt{x}\right) dx$$
$$= \int_0^4 \left(1 + x^{\frac{1}{2}}\right) dx$$
$$= \left[x + \frac{2}{3}x^{\frac{3}{2}}\right]_0^4$$
$$= \left(4 + \frac{2}{3} \times 8\right) - 0$$
$$= \frac{28}{3}$$

Edexcel AS Maths Integration 3 Notes and Examples

Example 5

The diagram shows the graph of $y = \frac{1}{r^2} - 1$ and the line y = 3.



- (i) Find the coordinates of points P and Q.
- (ii) Find the area bounded by the curve, the line y = 3 and the *x* axis.

Solution

- (i) At P and Q, $\frac{1}{x^2} 1 = 3 \Rightarrow \frac{1}{x^2} = 4 \Rightarrow x^2 = \frac{1}{4} \Rightarrow x = \pm \frac{1}{2}$. The coordinates of P are $\left(-\frac{1}{2},3\right)$ and the coordinates of Q are $\left(\frac{1}{2},3\right)$.

By symmetry area A is also $\frac{1}{2}$. Area B = 3 × 1 = 3

Total area = $\frac{1}{2} + \frac{1}{2} + 3 = 4$.