Section 1: Introduction to integration

Exercise level 2

1. The gradient function of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{2}+x$.
(i) Find the equation of the curve given that $y=2$ when $x=1$.
(ii) Find the value of y when $x=3$.
2. The gradient of a curve at the point (x, y) is given by $4(1-x)$. Given that the curve has a maximum value of 8 , find the equation of the curve.
3. Find an expression for y in terms of x if $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-1)(3 x-5)$ and $y=2$ when $x=1$
4. A curve with gradient function $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{2}-1$ has a local minimum value of 1 . Find the equation of the curve and the coordinates of the local maximum value.
5. A curve has gradient function $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x+k$
(i) It has a maximum point at $x=-2$. Find the value of k.
(ii) The curve passes through the point $(1,3)$. Find the equation of the curve.
