

Section 2: Inequalities

Exercise level 2

1. Solve the following linear inequalities.

(i)	$5(x-3) \le 2(2x+3)$	(ii) $2(1-x) > 3x+4$
(iii)	$4(2x+5) \ge 3(3x-1)$	(iv) $\frac{2x+1}{3} > \frac{x-4}{2}$
(v)	$-\frac{1}{2}(4+3x) \ge 2x-1$	(vi) $\frac{x-1}{3} > -\frac{3-x}{2}$

- 2. In each of the following parts, use a sketch of appropriate quadratic graphs to solve the quadratic inequalities, and indicate on the sketch the values of x which represent the solution.
 - (i) $x^2 5x + 6 < 0$ (ii) $-2x^2 + x + 3 \ge 0$
 - (iii) $x^2 + 8 < 2x^2 + x + 6$
- 3. Solve the following quadratic inequalities.
 - (i) $1-x-2x^2 \ge 0$ (ii) $x^2+2x-1<0$ (iii) $x^2 \ge 3x+10$ (iv) (iv) x(x+3) > x+8
- 4. Solve the following inequalities.

(i)
$$\frac{2}{x} \ge 3$$
 (ii) $\frac{x-2}{x+1} < 1$

- 5. Show the regions represented by the following inequalities on graphs. (i) y > x-2 (ii) $y \le 2x-3$
 - (iii) $y \ge x^2 + 1$ (iv) $y < x^2 + 2x 3$
- 6. Find the set of values of k for which each of the quadratic equations below have no real roots.
 - $(i) \quad x^2 5x + k = 0$
 - (ii) $x^2 + kx + k + 3 = 0$

