

Section 3: Modelling curves

Exercise level 2

1. The relationship between two variables x and y is believed to be of the form $y = kx^n$, where k and n are constants.

In an experiment, the following values of *x* and *y* are recorded.

x	1	2	3	4	5	6	7
у	3	8	16	24	34	44	56

- (i) Plot the graph of ln y against ln x and explain why this tells you that the model $y = kx^n$ is appropriate.
- (ii) Use your graph to estimate the values of *k* and *n*.
- (iii) Estimate the value of *y* when x = 10.
- 2. The relationship between two variables *p* and *q* is believed to be of the form $q = ab^p$, where *a* and *b* are constants.

In an experiment, the following values of *p* and *q* are recorded.

р	1.2	3.4	5.7	6.2	7.4	9.8
q	2.5	3.7	5.8	6.1	7.7	11.9

- (i) Plot the graph of log q against p, and explain why this tells you that the model $q = ab^{p}$ is appropriate.
- (ii) Use your graph to estimate the values of *a* and *b*.
- (iii) Estimate the value of q when p = 12.
- 3. An engineer finds the following data in an investigation into the breaking strain of a bridge cable when it is subjected to different levels of a particular treatment. The data is given in suitable, but undefined, units.

Treatment <i>x</i>	0.2	0.4	0.6	0.8	1
Breaking strain y	0.07	0.33	0.77	1.43	2.25

- (i) Sketch a graph of *y* against *x*, and suggest a form for a rule connecting them.
- (ii) Write your rule in terms of logarithms, and hence plot a suitable graph and use it to find approximately the law.

