Edexcel AS Maths Exponentials \& logarithms

Section 3: Modelling curves

Exercise level 1

1. Two variables s and t are related by the formula $s=a t^{c}$, where a and c are constants.
(i) Show that this relationship can be written as $\log s=\log a+c \log t$.
(ii) Explain why the model can be tested by plotting $\log s$ against $\log t$.

Values of s and t are recorded in an experiment.

s	9	13	16	18	20	22
t	5	10	15	20	25	30

(iii) Plot the graph of $\log s$ against $\log t$ and use your graph to estimate the values of a and c.
2. Two variables a and b are related by the formula $b=m n^{a}$, where m and n are constants.
(i) Show that this relationship can be written as $\ln b=\ln m+a \ln n$.
(ii) Explain why the model can be tested by plotting $\ln b$ against a.

In an experiment, the following values of a and b are obtained.

a	0.5	1.0	1.5	2.0	2.5	3.0	3.5
b	4.5	4.0	3.6	3.2	2.9	2.6	2.3

(iii) Plot the graph of $\ln b$ against a and use your graph to estimate the values of m and n.
3. In an experiment, the temperature of a cooling jacket is measured in ${ }^{\circ} \mathrm{C}$ after t minutes, and the following data is found:

t minutes	0	3	6	10	14	20
$\theta^{\circ} \mathrm{C}$	60	44.1	30.9	19.9	12.9	6.7

The experimenter expects the data to fit a law of the form $\theta=k a^{-t}$.
(i) Plot a graph of $\log \theta$ against t.
(ii) Use your graph to find the law which the experimenter seeks.

