

Section 3: Modelling curves

Exercise level 1

- 1. Two variables *s* and *t* are related by the formula $s = at^{c}$, where *a* and *c* are constants.
 - (i) Show that this relationship can be written as $\log s = \log a + c \log t$.
 - (ii) Explain why the model can be tested by plotting $\log s$ against $\log t$.

Values of *s* and *t* are recorded in an experiment.

S	9	13	16	18	20	22
t	5	10	15	20	25	30

- (iii) Plot the graph of log *s* against log *t* and use your graph to estimate the values of *a* and *c*.
- 2. Two variables *a* and *b* are related by the formula $b = mn^a$, where *m* and *n* are constants.
 - (i) Show that this relationship can be written as $\ln b = \ln m + a \ln n$.
 - (ii) Explain why the model can be tested by plotting $\ln b$ against *a*.

In an experiment, the following values of *a* and *b* are obtained.

а	0.5	1.0	1.5	2.0	2.5	3.0	3.5
b	4.5	4.0	3.6	3.2	2.9	2.6	2.3

- (iii) Plot the graph of $\ln b$ against *a* and use your graph to estimate the values of *m* and *n*.
- 3. In an experiment, the temperature of a cooling jacket is measured in $^{\circ}$ C after *t* minutes, and the following data is found:

t minutes	0	3	6	10	14	20
θ°C	60	44.1	30.9	19.9	12.9	6.7

The experimenter expects the data to fit a law of the form $\theta = ka^{-t}$.

- (i) Plot a graph of $\log \theta$ against *t*.
- (ii) Use your graph to find the law which the experimenter seeks.

