Edexcel AS Mathematics Differentiation

Section 4: More about differentiation

Exercise level 2

1. A variable rectangle has a constant perimeter of 20 cm . Find the lengths of the sides when the area is a maximum.
2. A square of side $x \mathrm{~cm}$ is cut from the corners of a piece of card 15 cm by 24 cm . The card is then folded to form an open box.
(i) Show that the volume of the box is $4 x^{3}-78 x^{2}+360 x \mathrm{~cm}^{3}$.
(ii) Find a value for x that will make the volume a maximum.
3. A cylinder is cut from a solid sphere of radius 3 cm . The height of the cylinder is $2 h$.
(i) Find the radius of the cylinder in terms of h.
(ii) Show that the volume of the cylinder is $V=2 \pi h\left(9-h^{2}\right)$.
(iii) Find the maximum volume of the cylinder as h varies.
4. A cylindrical oil storage tank of radius r and height h is made so that the sum of its radius and its height is 24 m .
Find the maximum volume of the storage tank.
5. A cylindrical can with height h metres and radius r metres has a capacity of 2 litres.
(i) Find an expression for h in terms of r.
(ii) Hence find an expression for the surface area of the can in terms of r only.
(iii)Find the value of r which minimises the surface area of the can.
6. Find the gradient of the chord joining the point with x-coordinate -2 to the point with x-coordinate $-2+h$ on the curve $y=x^{3}+2 x^{2}$.
7. The point P on the curve $y=1-x-x^{3}$ has x-coordinate -1 .
(i) Find the gradient of the chord joining P to the point on the curve with x-coordinate $-1+h$.
(ii) Hence find the gradient of the tangent to the curve at P .
8. Differentiate from first principles to find the derivative of each of the functions below
(i) $\mathrm{f}(x)=2 x^{2}-3 x+1$
(ii) $\mathrm{f}(x)=x^{3}-2 x^{2}+3$
