Section 4: More about differentiation

Exercise level 1

1. Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for each of the following.
(i) $y=x^{3}-3 x^{2}+4 x-1$
(ii) $y=\frac{1}{x}-\frac{2}{x^{2}}$
(iii) $y=2 \sqrt{x}$
2. A curve has equation $y=x^{3}-3 x^{2}+6$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(ii) Find the coordinates of any turning points and use $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ to determine the nature of the turning points.
(iii)Sketch the curve.
3. A farmer has 100 m of fence available, with which he intends to build a pen for his sheep. He intends to create a rectangular pen against a permanent stone wall, as in the diagram.
(i) Show that $A=\frac{1}{2} x(100-x)$.

(ii) Find $\frac{\mathrm{d} A}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}$.
(iii)Find the value of x that makes the area as large as possible, and explain how you know that this is a maximum.
4. Find the gradient of the chord joining the point with x-coordinate 1 to the point with x-coordinate $1+h$ on the curve $y=x^{2}-3 x+1$.
5. The point P on the curve $y=2 x^{2}-x-1$ has x-coordinate 1 .
(i) Find the gradient of the chord joining P to the point on the curve with x-coordinate $1+h$.
(ii) Hence find the gradient of the tangent to the curve at P .
