

Section 1: Introduction to differentiation

Crucial points

1. Use notation carefully

Make sure that you are familiar both with the notation $\frac{dy}{dx}$ (used when you

are given y as a function of x) and the notation f'(x) (used when you are given a function f(x)).

2. Use notation in the same way that it is used in the question **Example:** Differentiate $v = t^2 + 2t$.

X Wrong
$$\frac{dy}{dx} = 2t + 2$$
.

 $\checkmark \quad \underline{Right} \quad \frac{dv}{dt} = 2t + 2, \text{ or} \\ \frac{d}{dt}(t^2 + 2t) = 2t + 2. \end{cases} \quad The expression you are differentiating has variables v and t, not y and x, so you are finding <math>\frac{dv}{dt}$, not $\frac{dy}{dx}$.

3. When calculating a gradient or tangent to a curve, make sure you get the coordinates the right way round

Example: Find the gradient of the curve $y = x^2 + 2x - 3$ when it crosses the *x*-axis.

Wrong
$$\frac{dy}{dx} = 2x + 2$$
. When $x = 0$, $\frac{dy}{dx} = 2 \times 0 + 2 = 0$.
Right $\frac{dy}{dx} = 2x + 2$. Curve crosses x axis when $y = 0$,

Right
$$\frac{dx}{dx} = 2x + 2$$
. Curve crosses x axis when $y = 0$
 $\Rightarrow x^2 + 2x - 3 = (x - 1)(x + 3) = 0$
 $\Rightarrow x = 1, \frac{dy}{dx} = 2 \times 1 + 2 = 4,$
or $x = -3, \frac{dy}{dx} = 2 \times (-3) + 2 = -4.$

4. Remember the relationship between the gradients of perpendicular lines

When finding the gradient of a normal, you need to first find the gradient of the tangent using differentiation, and then use the relationship $m_1m_2 = -1$. Always show clearly that you are using this relationship.

5. Draw a diagram if needed

Questions on tangents and normals may go on to ask for other coordinate geometry work such as finding where lines cross. If this is the case, a diagram is very helpful.

