## Edexcel AS Maths Differentiation 1 Exercise

## Section 1: Introduction to differentiation

## Exercise level 3 (Extension)

1. (i) Sketch the graph of $y=-x^{2}+5 x-6$, and find $P$ and $Q$ where it crosses the $x$-axis.
(ii) Find the gradients of the tangents at P and Q , and hence find the coordinates of the points A and B where the tangents and normals at P and Q intersect.
(iii) Find the area of quadrilateral PAQB.
2. (i) Sketch the curve $y=\frac{1}{8} x^{2}$, and find the equation of the line through $\mathrm{F}(0,2)$ with gradient $-\frac{1}{2}$. Add this line to your sketch.
(ii) Find the $x$-coordinates of the points P and Q where the straight line and the curve in part (i) intersect.
(iii) Find the gradients of the tangents to the curve at P and Q .
(iv) Show that the tangents at P and Q are perpendicular.
(v) Find the $x$-coordinates of points R and S , where the line $y=a x+2$ intersects the curve.
(vi) Find the gradients of the tangents to the curve at R and S .
(vii) Show that the tangents at R and S are perpendicular.
(viii)By considering your results, make a general statement about lines through the point F , and tangents to the curve.
3. (i) Find the gradients of each of the following graphs, at the points where they cross:

$$
y=x^{2}-2 \text { and } y=-x+4
$$

(ii) Find the acute angle between the two graphs at the crossing point with the larger $x$-coordinate.
4. The 'fringe' at the top of a wooden fence is cut by a computer-controlled machine, as in the diagram. The curved sections of the fringe are given by the three quadratic equations

$$
\begin{aligned}
& y=(x-2)^{2}+2 \\
& y=\frac{1}{2} x^{2}-6 x+22 \\
& y=(x-10)^{2}+2
\end{aligned}
$$


between $x=0$ and $x=12$.
(i) Find the angles at the vertices A, B, C, and D.
(ii) After customer complaints about the sharp points, the manufacturer decides to 'smooth' the points. Considering point B , he decides to add a cubic curve from the point where $x$ $=3.5$ to the point where $x=4.5$, as in the


## Edexcel AS Maths Differentiation 1 Exercise

diagram. He can make the gradients fit at the left hand point. He chooses the curve

$$
y=-0.25 x^{3}+0.75 x^{2}+6.938 x-18.5
$$

Check that the new curve which the computer-controlled machine will cut meets the requirement to fit the old curve fairly accurately.
(iii) Find the gradients of the old curves and that of the new curve at $x=3.5$ and $x=4.5$, and comment on the results.

