

Section 1: Introduction to differentiation

Exercise level 2

- 1. Given that $y = x^3 + 2x^2$, find $\frac{dy}{dx}$. Hence find the *x*-coordinates of the two points on the curve where the gradient is 4.
- 2. (i) Show that the point (1, 2) lies on both the curves $y = 2x^3$ and $y = 3x^2 1$. (ii) Show that the curves have the same gradient at this point.
 - (iii) What do these results this tell you about the two curves?
- 3. The displacement *s* metres of a particle from a point O after *t* seconds is given by the equation $s = t^3 3t^2 9t$. Find the velocity $v (= \frac{ds}{dt})$ in terms of *t*, and hence find the time at which the particle is stationary (i.e. the velocity is zero).
- 4. Find $\frac{dy}{dx}$ if: (i) $y = (x^2 + 1)(x - 1)$
 - (ii) y = (x-1)(x+1)(x-2)

- 5. A curve has equation $y = ax^3 + bx$, where *a* and *b* are constants. At the point where x = 1, the *y*-coordinate is 8 and the gradient is 12. Find *a* and *b*.
- 6. Show that the tangent to the curve $y = x^3 + x + 2$ at the point P with *x*-coordinate 1 passes through the origin, and find the equation of the normal at this point. Given that the normal cuts the *x*-axis at the point Q, find the area of triangle OPQ.
- 7. (i) For the graph $y = ax^2 + bx + c$, find the equation of the tangent when x = p.
 - (ii) Find the equation of the tangent from (i) above, in the case that b = 0.
 - (iii) Explain by reference to the graph why the answer to (ii) is unchanged for all values of a if p = 0.
- 8. (i) Show that the graphs

$$y = \frac{1}{3}x^3 + 2x + 1$$
 (A)
 $y = x^2 - \frac{1}{2}x + 1$ (B)

cross at the point P with coordinates (0, 1).

- (ii) Find the gradients of the two curves at P.
- (iii) What can you deduce about the two curves from your results in (ii) above?
- (iv) Show that for any value of *a*, the curve $y = ax^2 \frac{1}{2}x + 1$ crosses the curve (A) above at a constant angle.

