Edexcel AS Mathematics Differentiation

Section 1: Introduction to differentiation

Exercise level 2

1. Given that $y=x^{3}+2 x^{2}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Hence find the x-coordinates of the two points on the curve where the gradient is 4 .
2. (i) Show that the point $(1,2)$ lies on both the curves $y=2 x^{3}$ and $y=3 x^{2}-1$.
(ii) Show that the curves have the same gradient at this point.
(iii) What do these results this tell you about the two curves?
3. The displacement s metres of a particle from a point O after t seconds is given by the equation $s=t^{3}-3 t^{2}-9 t$. Find the velocity $v\left(=\frac{\mathrm{d} s}{\mathrm{~d} t}\right)$ in terms of t, and hence find the time at which the particle is stationary (i.e. the velocity is zero).
4. Find $\frac{d y}{d x}$ if:
(i) $y=\left(x^{2}+1\right)(x-1)$
(ii) $y=(x-1)(x+1)(x-2)$
5. A curve has equation $y=a x^{3}+b x$, where a and b are constants. At the point where $x=1$, the y-coordinate is 8 and the gradient is 12 . Find a and b.
6. Show that the tangent to the curve $y=x^{3}+x+2$ at the point P with x-coordinate 1 passes through the origin, and find the equation of the normal at this point. Given that the normal cuts the x-axis at the point Q , find the area of triangle OPQ.
7. (i) For the graph $y=a x^{2}+b x+c$, find the equation of the tangent when $x=p$.
(ii) Find the equation of the tangent from (i) above, in the case that $b=0$.
(iii) Explain by reference to the graph why the answer to (ii) is unchanged for all values of a if $p=0$.
8. (i) Show that the graphs

$$
\begin{align*}
& y=\frac{1}{3} x^{3}+2 x+1 \tag{A}\\
& y=x^{2}-\frac{1}{2} x+1 \tag{B}
\end{align*}
$$

cross at the point P with coordinates $(0,1)$.
(ii) Find the gradients of the two curves at P .
(iii) What can you deduce about the two curves from your results in (ii) above?
(iv) Show that for any value of a, the curve $y=a x^{2}-\frac{1}{2} x+1$ crosses the curve (A) above at a constant angle.

