Edexcel AS Mathematics Coordinate geometry integral

Section 1: Points and straight lines

Crucial points

1. Draw a diagram

In most questions involving coordinate geometry, it is helpful to draw a sketch diagram. It does not need to be accurate, but it will help to give you a rough idea of the answer you might expect.
2. Ensure you can calculate the gradient of the line correctly. The gradient of a line, m, is given by

$$
m=\frac{\text { change in } y}{\text { change in } x}
$$

The gradient, m, of the line joining two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Don't get the gradient calculation upside-down! The gradient tells you by how much y changes when x increases by 1 .
3. Make sure you can calculate the y-intercept of a straight-line graph.
The y-intercept of a line is where it crosses the y-axis. It is the value of y when $x=0$.
4. Make sure you understand how the standard straight-line equation works.
An equation which can be written in the form $y=m x+c$ represents a straight line.
m is the gradient and c is the y-intercept.
5. Make sure you understand the conditions on the gradients of lines for the lines to be parallel or perpendicular.
If two lines have gradients m_{1} and m_{2} then:

- the lines are parallel if $m_{1}=m_{2}$.
- the lines are perpendicular if $m_{1} m_{2}=-1$ (i.e. if $=m_{2}=-\frac{1}{m_{1}}$).

6. Make sure you understand and can remember how to calculate the distance between two points
The distance, d, between two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

This is just from applying Pythagoras's theorem

Edexcel AS Maths Coordinate geometry 1 Crucial points

7. Make sure you understand and can remember how to calculate the midpoint of the line between two points.
The coordinates of the midpoint, M , of the line joining $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are given by

$$
\mathrm{M}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

8. Make sure you can calculate the equation of a straight line.

- from the coordinates of two points on it.
- from its gradient and the coordinates of a point on it.

