

Edexcel AS Mathematics The binomial expansion

Section 1: Finding binomial expansions

Exercise level 3 (Extension)

- 1. (i) Expand $\left(1+\sqrt{3}\right)^4$
 - (ii) Hence write $(1-\sqrt{3})^4$ in the form $p+q\sqrt{3}$ where p and q are rational numbers.
- 2. A process in the aeronautical industry produces cubes, filled with a composite material. If the process is working accurately, the cubes produced are of side length x, and they are then filled with a composite material with density ρ , both measured in suitable units.
 - (i) Write down a formula for the mass *M* of each cube, if the process is working properly.
 - (ii) In fact the machine used in the process has small errors in both the length and density, so that the cube dimension is $x + \alpha$, and the density $\rho + \beta$. Write out the binomial expansion of your formula for the mass M, ignoring any terms which involve powers or products of the error terms α and β .
 - (iii)It is intended that the production should make cubes with x = 3, and $\rho = 10$, but the errors are measured as $\alpha = 0.01$ and $\beta = 0.02$. Use your expansion in (ii) to find an approximation for the extra mass of each cube. (You could check your answer by direct calculation.)
- 3. Professor Moriarty, the Victorian arch-villain and enemy of Sherlock Holmes, was known to have "written a treatise on the binomial theorem". In one part of his treatise, the professor was investigating the expansion of

$$f(n) = \left(1 + \frac{1}{n}\right)^n$$
, $n \in \Box^+$ (positive integers)

- (i) Write out fully the expansions of $\left(1+\frac{1}{2}\right)^2$, $\left(1+\frac{1}{3}\right)^3$ and $\left(1+\frac{1}{4}\right)^4$.
- (ii) Write out an approximation for $\left(1+\frac{1}{n}\right)^n$ giving the first 5 terms.
- (iii)The professor extended this experiment by finding approximations for values of n = 10, 100, 1000 (we don't know how he did it!), and went on to suggest a limit for the sequence of numbers he found.

 Use a calculator (or, if available, a spreadsheet) to repeat the experiment and find values for n = 10, 100, 1000., and suggest what your approximation in (ii) leads to as n gets bigger.
- (iv)Experiment with your calculator or spreadsheet using very large numbers to find a more accurate approximation to the limit. (You may find the number you achieve is familiar, and found elsewhere on your calculator.)

