Edexcel AS Further Mathematics Inverse matrices "integral

Section 3: Matrices and simultaneous equations

Exercise level 2

1. Solve the following simultaneous equations by matrix methods.
(i) $x-y=5$
$3 x+2 y=5$
(ii) $4 x+6 y=8$
$2 x+3 y=4$
2. Use a matrix method to solve the equations $x+3 y+z=4$

$$
\begin{aligned}
& 2 x-y-4 z=3 \\
& 4 x+5 y-3 z=9
\end{aligned}
$$

3. The matrix $\mathbf{A}=\left(\begin{array}{ccc}k & 4 & 0 \\ 0 & k & 4 \\ 2 & 3 & 1\end{array}\right)$.
(i) State whether \mathbf{A} is singular or non-singular when $k=2$, justifying your answer.
(ii) Determine whether the simultaneous equations below have any solutions when $k=4$.

$$
\begin{array}{r}
k x+4 y=6 \\
k y+4 z=8 \\
2 x+3 y+z=1
\end{array}
$$

4. (i) Find $\mathbf{A B}$, where $\mathbf{A}=\left(\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & a\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}3 a-1 & a+1 & -4 \\ 1 & 2 a-1 & -2 \\ -3 & -3 & 6\end{array}\right)$

Hence write down the inverse matrix \mathbf{A}^{-1}, stating a necessary condition on a for this inverse to exist.
(ii) Using this result solve the equations

$$
\begin{aligned}
2 x-y+z & =1 \\
3 y+z & =1 \\
x+y+a z & =2
\end{aligned}
$$

5. For each of the following values of k, state whether the equations

$$
\begin{aligned}
& 2 x+y+3 z=5 \\
& x-2 y+(k+1) z=2 \\
& k x+4 y+2 z=8
\end{aligned}
$$

have a unique solution, no solutions or infinitely many solutions.
Give the solutions where they exist, and interpret each situation geometrically.
(i) $k=-2$
(ii) $k=2$
(iii) $k=3$

Edexcel AS FM Inverse matrices 3 Exercise

6. (i) For what value of k is the matrix $\mathbf{A}=\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 1 & 1 \\ -3 & 2 & k\end{array}\right)$ singular?
(ii) Find \mathbf{A}^{-1} when $k=3$.
(iii) If $k=3.5$ and $\mathbf{A}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}4 \\ 3 \\ m\end{array}\right)$, give the value of m that means that there is a solution, and interpret this geometrically.
7. You are given

$$
\left(\begin{array}{ccc}
3 & -1 & 1 \\
2 & 1 & -6 \\
5 & -3 & k
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
5 \\
r
\end{array}\right)
$$

There are three possibilities:
A there is a unique solution
B there are an infinite number of solutions
C there are no solutions
What are the conditions on k and r for these possibilities? Interpret your answers geometrically.
8. You are given the equations

$$
\begin{aligned}
& x+z=1 \\
& 2 y+3 z=1 \\
& x+7 y=1
\end{aligned}
$$

Find the unique solution to this set of equations
(i) by writing the equations as a matrix equation and finding the inverse matrix
(ii) by eliminating x and then z to find y, then substituting to find z and x.

Check that your answers agree.

