Edexcel AS Further Mathematics Inverse matrices

Section 3: Matrices and simultaneous equations

Exercise level 1

1. (i) Find the inverse of the matrix $\mathbf{M}=\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$
(ii) Use this inverse to solve the simultaneous equations

$$
\begin{aligned}
2 x+3 y & =8 \\
x-y & =-1
\end{aligned}
$$

2. Find the values of a for which the simultaneous equations

$$
\begin{aligned}
& a x+8 y=1 \\
& 2 x+a y=3
\end{aligned}
$$

do not have a unique solution.
3. (i) Given that $\mathbf{A}=\left(\begin{array}{ccc}-3 & 2 & -1 \\ 2 & -1 & 3 \\ -1 & 1 & 1\end{array}\right)$, use your calculator to find \mathbf{A}^{-1}.
(ii) Hence find values of x, y and z satisfying

$$
\begin{aligned}
& -4 x-3 y+5 z=3 \\
& -5 x-4 y+7 z=4 \\
& x+y-z=0
\end{aligned}
$$

4. The matrix equation $\left(\begin{array}{cc}3 & 6 \\ -2 & -4\end{array}\right)\binom{x}{y}=\binom{a}{b}$ represents two simultaneous linear equations in x and y.
(i) Write down the two equations.
(ii) Calculate the determinant of $\left(\begin{array}{cc}3 & 6 \\ -2 & -4\end{array}\right)$. What does this tell you about the solution of the equations in part (i)?
