Edexcel AS Further Mathematics Inverse matrices "integral

Section 2: The inverse of a 3×3 matrix

Exercise level 2

1. $\mathbf{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & x\end{array}\right), \mathbf{B}=\left(\begin{array}{lll}3 & 2 & 1 \\ 4 & 3 & 2 \\ 5 & 4 & x\end{array}\right)$
(i) Find $|\mathbf{A}|$ and $|\mathbf{B}|$.
(ii) For what values of x is $|\mathbf{A}|+|\mathbf{B}|=0$?
(iii) For what values of x is $|\mathbf{A}|-|\mathbf{B}|=0$?
2. The point P is transformed by the matrix $\left(\begin{array}{ccc}3 & -1 & 5 \\ 2 & 0 & -4 \\ 1 & -2 & 0\end{array}\right)$ to the image point $(2,10,-1)$. Find the coordinates of P.
3. Prove that $(\mathbf{A B C})^{-1}=\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}$.
4. \mathbf{A} and \mathbf{B} are 3×3 matrices that could be either singular or non-singular. Consider the product AB. Is it possible to put 'singular' or 'non-singular' accurately into each box in the grid below?

\times	A singular	A non-singular
\mathbf{B} singular		
\mathbf{B} non-singular		

5. (i) Without using a calculator, find the inverse of $\mathbf{P}=\left(\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -4 \\ 0 & 2 & -19\end{array}\right)$ and the inverse of $\mathbf{Q}=\left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{3} \\ 0 & \frac{1}{4} & 0\end{array}\right)$.
(ii) Find $\mathbf{P Q}$ and $(\mathbf{P Q})^{-1}$, and verify $(\mathbf{P Q})^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1}$.
