Edexcel AS Further Mathematics Inverse matrices "integral

Section 2: The inverse of a 3×3 matrix

Exercise level 1

1. Without using a calculator, find the determinant of each of these 3×3 matrices.
(i) $\left(\begin{array}{ccc}1 & 0 & 2 \\ -3 & 1 & 4 \\ -1 & -3 & -2\end{array}\right)$
(ii) $\left(\begin{array}{ccc}2 & 3 & -5 \\ 1 & -2 & -4 \\ 0 & 3 & 0\end{array}\right)$
(iii) $\left(\begin{array}{ccc}-3 & 1 & 6 \\ -2 & 0 & k \\ 1 & -1 & 4\end{array}\right)$
2. $\mathbf{P}=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 0 \\ 3 & 0 & 0\end{array}\right), \quad \mathbf{Q}=\left(\begin{array}{lll}2 & 2 & 2 \\ 3 & 3 & 0 \\ 4 & 0 & 0\end{array}\right)$

Without using a calculator, find $|\mathbf{P}|,|\mathbf{Q}|, \mathbf{P Q}, \mathbf{Q P},|\mathbf{P Q}|$ and $|\mathbf{Q P}|$, and hence show that $\operatorname{det}(\mathbf{P Q})=\operatorname{det}(\mathbf{Q P})=\operatorname{det}(\mathbf{P}) \times \operatorname{det}(\mathbf{Q})$.
3. A solid shape has volume $5 \mathrm{~cm}^{3}$.
(i) The shape is transformed under the matrix $\mathbf{M}=\left(\begin{array}{ccc}3 & 1 & -2 \\ 2 & 0 & 4 \\ -1 & 0 & -3\end{array}\right)$.

What is the volume of the image?
(ii) The original shape is transformed under the matrix \mathbf{M}^{n}. The image has volume $320 \mathrm{~cm}^{3}$. What is the value of n ?
4. The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 1 \\ 2 & 1 & -2 \\ 4 & 1 & 0\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}1 & 2 & -3 \\ -2 & 1 & 1 \\ 3 & -1 & 0\end{array}\right)$. Without using a calculator, find:
(i) \mathbf{A}^{-1}
(ii) $\quad \mathbf{B}^{-1}$
(iii) $(\mathbf{A B})^{-1}$
(iv) $(\mathbf{B A})^{-1}$
5. (i) For what value of k is the matrix $\mathbf{M}=\left(\begin{array}{ccc}1 & -3 & 2 \\ 0 & 2 & -2 \\ -1 & 3 & k\end{array}\right)$ singular?
(ii) If k does not take this value, find \mathbf{M}^{-1} in terms of k.
6. A \qquad together with its \qquad gives the \qquad The
\qquad of the \qquad matrix gives the \qquad matrix. The
\qquad matrix divided by the \qquad gives the \qquad matrix.

Fit the following words into the gaps above so that it makes sense and is true.

COFACTOR
COFACTOR
MINOR

ADJUGATE ADJUGATE INVERSE

SIGN
DETERMINANT
TRANSPOSE

