Edexcel AS Further Mathematics Inverse matrices "integral
 Section 1: Determinants and inverses

Exercise level 2

1. If $\mathbf{A}=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right), \mathbf{B}=\left(\begin{array}{rr}6 & 1 \\ 11 & 3\end{array}\right), \mathbf{C}=\left(\begin{array}{ll}-4 & 3 \\ -5 & 2\end{array}\right)$ and $\mathbf{D}=\left(\begin{array}{cc}4 & 7 \\ -2 & 7\end{array}\right)$, find matrices \mathbf{X}, \mathbf{Y} and \mathbf{Z} such that $\mathbf{A X}=\mathbf{B}, \mathbf{B Y}=\mathbf{C}, \mathbf{C Z}=\mathbf{D}$.
2. The matrix $\left(\begin{array}{cc}a-3 & -2 \\ a & 2 a-1\end{array}\right)$ is singular. Find the possible values of a.
3. The matrix $\mathbf{M}=\left(\begin{array}{cc}2 & 2 \\ -3 & 1\end{array}\right)$ represents a transformation of the (x, y) plane.

A trapezium T with area 4 square units is transformed by \mathbf{M} into trapezium T^{\prime}.
(i) Find the area of the new trapezium T^{\prime}
(ii) Find the matrix which transforms T^{\prime} into T.
4. The plane is transformed by means of the matrix $\mathbf{M}=\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)$.

Show that $\operatorname{det} \mathbf{M}=0$ and \mathbf{M} maps all points of the $x y$ plane onto a straight line. Give the equation of the line.
5. Transformations S and R are represented by matrices \mathbf{M} and \mathbf{N} respectively, where $\mathbf{M}=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ and $\mathbf{N}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
(i) Describe the transformations represented by S and R.
(ii) Find \mathbf{M}^{-1} and \mathbf{N}^{-1}.
(iii) Find $\mathbf{M N}$ and $(\mathbf{M N})^{-1}$. Verify that $(\mathbf{M N})^{-1}=\mathbf{N}^{-1} \mathbf{M}^{-1}$
(iv) Explain the result $(\mathbf{M N})^{-1}=\mathbf{N}^{-1} \mathbf{M}^{-1}$ in terms of the transformations S and R.
6. Show that the matrix $\left(\begin{array}{cc}3 & 6 \\ -2 & -4\end{array}\right)$ maps all points of the $x-y$ plane onto a straight line and find the equation of that line.
7. Matrix \mathbf{A} represents a transformation T where $\mathbf{A}=\left(\begin{array}{ll}2 & -3 \\ 4 & -4\end{array}\right)$.
(i) Find the inverse of \mathbf{A}.
(ii) Find the coordinates of the point that is mapped to $(9,16)$ under transformation T .
(iii)Find \mathbf{A}^{2}.
(iv) Show that $\mathbf{A}^{3}=\left(\begin{array}{ll}d & 0 \\ 0 & d\end{array}\right)$ stating the value of d.
(v) Give a geometrical description of the matrix \mathbf{A}^{3}.

Edexcel AS FM Inverse matrices 1 Exercise

8. The matrix $\mathbf{A}=\left(\begin{array}{cc}2 & -3 \\ -2 & 4\end{array}\right)$
(i) Find \mathbf{A}^{-1}.
(ii) Given that $\mathbf{A}=\mathbf{B C}$, where $\mathbf{B}=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$, find \mathbf{C}^{-1}.
9. Find the value of x given that $\mathbf{A}^{2}=\mathbf{A}^{-1}$ and

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & x & 1 \\
-1 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

