

Section 1: Introduction to matrices

Exercise level 1

1. This diagram shows a map of the roads linking 3 towns A, B and C. The corresponding '*direct route*' matrix is shown beside it.

	Α	В	С	BA
A	[0	1	2]	
В	1	0	1	
С	2	1	0	

For each of the following diagrams construct the *direct route* matrix.

2. A café sells 3 main meals A, B, and C each day. On two days the sales of each type are shown in the matrix below.

$$\begin{array}{c} M & T \\ A \begin{bmatrix} 4 & 6 \\ 3 & 5 \\ C \end{bmatrix} \\ \end{array}$$

If meal A costs £4, meal B costs £5 and meal C costs £3 construct a matrix showing the amount taken for each of the meals on each of the two days. Hence state the total amount taken for each meal over the two days.

- 3. $\mathbf{A} = \begin{pmatrix} 2 & -3 \\ -1 & 5 \end{pmatrix}$ $\mathbf{B} = \begin{pmatrix} -3 & -1 \\ 2 & 7 \end{pmatrix}$ $\mathbf{C} = \begin{pmatrix} 2 & 3 & -4 \\ -1 & 2 & 5 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} -1 & -4 & 2 \\ -3 & 5 & 6 \end{pmatrix}$ Calculate, if possible, (i) $\mathbf{A} + 2\mathbf{B}$ (ii) $\mathbf{C} - \mathbf{D}$ (iii) $3\mathbf{A} - 2\mathbf{C}$ (iv) $3\mathbf{D} - \mathbf{C}$ 4. $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix}$ $\mathbf{B} = \begin{pmatrix} -1 & 3 & 2 \\ 5 & 1 & -2 \end{pmatrix}$ $\mathbf{C} = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 4 & -1 \\ 2 & 5 \\ -3 & 1 \end{pmatrix}$ Calculate, if possible, the following (i) \mathbf{AB} (ii) \mathbf{AC} (iii) \mathbf{BC} (iv) \mathbf{BD}
- 5. The matrices **A** and **B** are defined by $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$

Edexcel AS FM Matrices 1 Exercise

- (i) Calculate
 - (a) $\mathbf{A} + \mathbf{B}$ (b) $\mathbf{A}\mathbf{B}$
- (ii) Show that $\mathbf{A} + \mathbf{B} \mathbf{AB} = m\mathbf{I}$, where *m* is an integer and **I** is the 2 x 2 identity matrix.

6. The matrices **A**, **B** and **C** are given by $\mathbf{A} = \begin{pmatrix} 1 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 2 & -1 \end{pmatrix}$ Find (i) $2\mathbf{A} + \mathbf{C}$ (ii) \mathbf{AB} (iii) \mathbf{BC}

- 7. If $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ x & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 6 & 2 \\ 4 & y \end{pmatrix}$ find the values of x and y given that $\mathbf{AB} = \mathbf{BA}$.
- 8. $\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{N} = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$.

Find $\mathbf{M}^2 - \mathbf{N}^2$ and $(\mathbf{M} + \mathbf{N})(\mathbf{M} - \mathbf{N})$ and explain why your results are not equal.