Edexcel AS Further Mathematics Matrices

Section 1: Introduction to matrices

Exercise level 1

1. This diagram shows a map of the roads linking 3 towns A, B and C . The corresponding 'direct route' matrix is shown beside it.
$\left.\begin{array}{c}A \\ A \\ A \\ B \\ C\end{array} \begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$

For each of the following diagrams construct the direct route matrix.

2. A café sells 3 main meals A, B, and C each day. On two days the sales of each type are shown in the matrix below.

$$
\begin{array}{cc}
M & T \\
A \\
B \\
C & {\left[\begin{array}{ll}
4 & 6 \\
3 & 5 \\
7 & 2
\end{array}\right]}
\end{array}
$$

If meal A costs $£ 4$, meal B costs $£ 5$ and meal C costs $£ 3$ construct a matrix showing the amount taken for each of the meals on each of the two days. Hence state the total amount taken for each meal over the two days.
3. $\mathbf{A}=\left(\begin{array}{cc}2 & -3 \\ -1 & 5\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{cc}-3 & -1 \\ 2 & 7\end{array}\right)$
$\mathbf{C}=\left(\begin{array}{ccc}2 & 3 & -4 \\ -1 & 2 & 5\end{array}\right)$
$\mathbf{D}=\left(\begin{array}{ccc}-1 & -4 & 2 \\ -3 & 5 & 6\end{array}\right)$

Calculate, if possible,
(i) $\mathbf{A}+2 \mathbf{B}$
(ii) $\mathbf{C}-\mathbf{D}$
(iii) $3 \mathbf{A}-2 \mathbf{C}$
(iv) $3 \mathbf{D}-\mathbf{C}$
4. $\mathbf{A}=\left(\begin{array}{cc}2 & 1 \\ -3 & 4\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{ccc}-1 & 3 & 2 \\ 5 & 1 & -2\end{array}\right)$
$\mathbf{C}=\left(\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right)$
$\mathbf{D}=\left(\begin{array}{cc}4 & -1 \\ 2 & 5 \\ -3 & 1\end{array}\right)$
Calculate, if possible, the following
(i) $\mathbf{A B}$
(ii) $\mathbf{A C}$
(iii) $\mathbf{B C}$
(iv) $\mathbf{B D}$
5. The matrices \mathbf{A} and \mathbf{B} are defined by

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right)
$$

Edexcel AS FM Matrices 1 Exercise

(i) Calculate
(a) $\mathbf{A}+\mathbf{B}$
(b) $\quad \mathbf{A B}$
(ii) Show that $\mathbf{A}+\mathbf{B}-\mathbf{A B}=m \mathbf{I}$, where m is an integer and \mathbf{I} is the 2×2 identity matrix.
6. The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by $\mathbf{A}=\left(\begin{array}{ll}1 & 4\end{array}\right), \quad \mathbf{B}=\binom{-3}{2}$ and $\mathbf{C}=\left(\begin{array}{ll}2 & -1\end{array}\right)$
Find (i) $2 \mathbf{A}+\mathbf{C}$
(ii) $\mathbf{A B}$
(iii) $\mathbf{B C}$
7. If $\mathbf{A}=\left(\begin{array}{ll}3 & 1 \\ x & 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}6 & 2 \\ 4 & y\end{array}\right)$ find the values of x and y given that $\mathbf{A B}=\mathbf{B} \mathbf{A}$.
8. $\quad \mathbf{M}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $\mathbf{N}=\left(\begin{array}{cc}2 & -2 \\ -1 & 3\end{array}\right)$.

Find $\mathbf{M}^{2}-\mathbf{N}^{2}$ and $(\mathbf{M}+\mathbf{N})(\mathbf{M}-\mathbf{N})$ and explain why your results are not equal.

