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Section 1: Modulus and argument 
 

Notes and Examples 
 
These notes contain subsections on 

 The modulus of a complex number 

 The argument of a complex number 

 Multiplying and dividing with the modulus-argument form 
 
 

The modulus of a complex number 
 
You are familiar with describing a point in the plane using Cartesian 
coordinates. However, this is not the only way of describing the location of a 
point. One alternative is to give its distance from a fixed point (usually the 
origin) and a direction (in this case the angle between the line connecting the 
point to the origin, and the positive real axis).  
 
This is a common method of describing locations in real life: you might say 
that a town is “50 miles north-west of London”, or when walking in open 
countryside your map might show you that you need to walk 2 miles on a 
bearing of 124°. 
In mathematics there are some situations in which this method of describing 
points is more convenient than Cartesian coordinates.  
 
The modulus of a complex number z is the distance of the point representing z 

from the origin on the Argand diagram. Notice that this definition also holds for 
real numbers on the number line: the modulus (or absolute value) of a real 
number is its distance on the number line from zero. 
 
In the same way, |z – w| (or |w – z|) is the distance of the point representing z 
from the point representing w. This also holds for real numbers on the number 
line: the distance of a real number x from a real number y on the number line 
is |x – y| (or |y – x|). For example, the distance between 2 and -3 on the number 
line is |2 – (-3)| = 5. 
 
 
Example 1 

Given that z = 2 + 5i and w = 3 – i, find 

(i) |z| 

(ii) |w| 

(iii) |z – w| 

 

Solution 

(i) 2 22 5 29z     

 

(ii) 2 23 ( 1) 10w      
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(iii) z – w = 2 + 5i – (3 – i) = -1 + 6i 

 2 2( 1) 6 37z w      

 
 

The argument of a complex number 
 
Finding the argument of a complex number involves using some knowledge of 
radians, and angles greater than 90°. You also need to know the values of the 

sine, cosine and tangent for common angles such as 30°  
6

 
 
 

radians , 45° 

 
4

 
 
 

radians  and 60°  
3

 
 
 

radians .  

 
 

The diagram shows that the argument  of the complex number z = x + yi 
satisfies the equations 
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In the diagram, the complex number z lies in the first quadrant, since both x 

and y are positive. So tan  is positive, and to find the value of θ, you just 

need to find 1tan
y

x

 .  

 
However, there is another possibility for 
which tan θ is positive. If both the real 
part and the imaginary part of z are 

negative,
2


     . In this case z is 

in the third quadrant. 

However, as tan θ is positive, using your 

calculator to find 1tan
y

x

  will give you the 

corresponding angle in the first quadrant, 
(see diagram) where x and y are both 
positive. To find the correct argument, 
you need to subtract π. 
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Next we need to look at the cases where tan θ is negative. 
 
One possibility is for the real part of z to be 
positive and the imaginary part negative, so that 

0
2


   . In this case, z is in the fourth 

quadrant.  
 

To find the value of θ, find 1tan
y

x

 . Your 

calculator should give you a negative angle, in 
the fourth quadrant as required. 
 
 
The value of tan θ is also negative if the real part of z is negative, but the 

imaginary part is positive, so that 
2


   . In this case z is in the second 

quadrant. 

 

Using your calculator to find 1tan
y

x

  will give 

you the corresponding angle in the fourth 
quadrant, with x positive and y negative (see 
diagram). To find the correct angle in the 
second quadrant, you need to add π. 
 
 
Example 2 

Find the modulus and argument of each of the following complex numbers. 

(i) z = 4 + 3i  (ii) z = –1 + i  (iii) z = 1 3i   

 

Solution 

(i) z = 4 + 3i 

|z| = 2 2(3 4 ) 5   

 Since z lies in the first quadrant, arg z = 1 3
tan 0.644

4

   

 

(ii)  z = –1 + i 

 |z| = 2 2(1 1 ) 2   

 Since z lies in the second quadrant, arg z = tan
-1

(-1) +   = 
3

4 4

 
    

 

 (iii) z = 1 3i   

 Modulus = 1 3 2   

 Since z lies in the third quadrant, arg z = 1 2
tan 3

3 3
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You can use the modulus (r) and the argument () to write a complex number 

in the form  cos isin  z r . This is the modulus-argument form 

(sometimes called the polar form) of the complex number. 
 
Make sure that you know the values of sin, cos and tan for the common 

angles , ,
6 4 3

  
(i.e. 30°, 45°, 60°). When you come across these angles, you 

are expected to use the exact values. 
 
 
Sometimes you may want to find a complex number if you are given its 
modulus and argument. 
 
You can see from the diagram that 

  x = r cos  

  y = r sin  

 
 
 
 
 
 
 
These relationships allow you to find the real and imaginary parts of a 
complex number with a given modulus and argument. 
 
 
Example 3 

Find the complex numbers with the given modulus and argument, in the form x + iy. 

(i) 
3

3, arg
4

z z


     

(ii) 2, arg
6

z z


    

 

Solution 

(i) r = 3,  = 
3

4


 

 
3 1 3

3cos 3
4 2 2

3 1 3
3sin 3

4 2 2

3 3
i

2 2

x

y

z





    

   

  

 

 

 

z = x + yi 

y 

x O 

r 

Re 

Im 



Edexcel AS FM Complex nos g1 Notes & Examples 

 5 of 7 03/01/17   © MEI 
 integralmaths.org 

(ii) r = 2,  = 
6


  

 
3
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Multiplying and dividing using the modulus-argument form  
 
Complex numbers in the modulus-argument form can be multiplied and 
divided easily by considering their moduli and arguments. 
 
For two complex numbers w and z 
 

  wz w z    
ww

z z
  

 

  arg arg argwz w z    arg arg arg
w

w z
z
   

 
In both the results above for the argument, some adjustment may be needed 

to ensure that the final argument is between - and , by adding or 

subtracting 2. (This is illustrated in Example 4). 
 
These results allow you to multiply and divide complex numbers in the 
modulus-argument form, quickly and easily. 
 
 
These results can be interpreted geometrically using the Argand diagram: 

 When z is multiplied by w, the vector z is enlarged by a scale factor w  

and rotated through an angle of arg w anticlockwise about O 

 When z is divided by w, the vector z is enlarged by a scale factor 
1

w
 

and rotated through an angle of arg w clockwise about O. 
 
 
Example 4 shows how these relationships can be used. 
 
 
Example 4 

For the complex numbers 
2 2

3 cos isin
3 3

  
  

 
z  and 4 cos isin

2 2

  
  

 
w , find, 

in modulus-argument form, 
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(i) wz   (ii) 
w

z
. 

Illustrate the points w, z, wz and 
w

z
 on an Argand diagram. 

 

Solution 

3, 4z w   

2
arg ,arg

3 2
z w

 
   

 

(i) 3 4 12wz w z      

  

arg arg arg

2

2 3

7

6

wz w z

 



 

 



 

  Principal argument of wz 
7 5

2
6 6

 
     

 
5 5

12 cos isin
6 6

     
       

    
wz  

 

(ii) 
4

3
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z z
   

  

arg arg arg
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4
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3 6 6

     
       

    

w

z
 

 

This cannot be the principal 

argument of zw as it is not in the 

range      . The value must 

be adjusted by adding or subtracting 

multiples of 2. 

This time the argument is in 
the correct range so does not 
need adjusting. 
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