Edexcel AS Further Maths Complex numbers

Section 1: Modulus and argument

Notes and Examples

These notes contain subsections on

- The modulus of a complex number
- The argument of a complex number
- Multiplying and dividing with the modulus-argument form

The modulus of a complex number
You are familiar with describing a point in the plane using Cartesian coordinates. However, this is not the only way of describing the location of a point. One alternative is to give its distance from a fixed point (usually the origin) and a direction (in this case the angle between the line connecting the point to the origin, and the positive real axis).

This is a common method of describing locations in real life: you might say that a town is " 50 miles north-west of London", or when walking in open countryside your map might show you that you need to walk 2 miles on a bearing of 124°.
In mathematics there are some situations in which this method of describing points is more convenient than Cartesian coordinates.

The modulus of a complex number z is the distance of the point representing z from the origin on the Argand diagram. Notice that this definition also holds for real numbers on the number line: the modulus (or absolute value) of a real number is its distance on the number line from zero.

In the same way, $|z-w|$ (or $|w-z|$) is the distance of the point representing z from the point representing w. This also holds for real numbers on the number line: the distance of a real number x from a real number y on the number line is $|x-y|$ (or $|y-x|$). For example, the distance between 2 and -3 on the number line is $|2-(-3)|=5$.

Example 1
Given that $z=2+5 \mathrm{i}$ and $w=3-\mathrm{i}$, find
(i) $|z|$
(ii) $|w|$
(iii) $|z-w|$

Solution

(i) $\quad|z|=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
(ii) $|w|=\sqrt{3^{2}+(-1)^{2}}=\sqrt{10}$

Edexcel AS FM Complex nos g1 Notes \& Examples

(iii)

$$
\begin{aligned}
& z-w=2+5 \mathrm{i}-(3-\mathrm{i})=-1+6 \mathrm{i} \\
& |z-w|=\sqrt{(-1)^{2}+6^{2}}=\sqrt{37}
\end{aligned}
$$

The argument of a complex number

Finding the argument of a complex number involves using some knowledge of radians, and angles greater than 90°. You also need to know the values of the sine, cosine and tangent for common angles such as $30^{\circ}\left(\frac{\pi}{6}\right.$ radians $), 45^{\circ}$ $\left(\frac{\pi}{4}\right.$ radians $)$ and $60^{\circ}\left(\frac{\pi}{3}\right.$ radians $)$.

The diagram shows that the argument θ of the complex number $z=x+y \mathrm{i}$ satisfies the equations

$$
\begin{aligned}
& \cos \theta=\frac{x}{r}=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
& \sin \theta=\frac{y}{r}=\frac{y}{\sqrt{x^{2}+y^{2}}} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

In the diagram, the complex number z lies in the first quadrant, since both x and y are positive. So tan θ is positive, and to find the value of θ, you just need to find $\tan ^{-1} \frac{y}{x}$.

However, there is another possibility for which $\tan \theta$ is positive. If both the real part and the imaginary part of z are negative, $-\pi<\theta \leq-\frac{\pi}{2}$. In this case z is in the third quadrant.

However, as $\tan \theta$ is positive, using your calculator to find $\tan ^{-1} \frac{y}{x}$ will give you the corresponding angle in the first quadrant, (see diagram) where x and y are both positive. To find the correct argument, you need to subtract π.

Edexcel AS FM Complex nos g1 Notes \& Examples

Next we need to look at the cases where $\tan \theta$ is negative.
One possibility is for the real part of z to be positive and the imaginary part negative, so that $-\frac{\pi}{2} \leq \theta<0$. In this case, z is in the fourth quadrant.

To find the value of θ, find $\tan ^{-1} \frac{y}{x}$. Your calculator should give you a negative angle, in the fourth quadrant as required.

The value of $\tan \theta$ is also negative if the real part of z is negative, but the imaginary part is positive, so that $\frac{\pi}{2} \leq \theta \leq \pi$. In this case z is in the second quadrant.

Using your calculator to find $\tan ^{-1} \frac{y}{x}$ will give you the corresponding angle in the fourth quadrant, with x positive and y negative (see diagram). To find the correct angle in the second quadrant, you need to add π.

Example 2

Find the modulus and argument of each of the following complex numbers.
(i) $z=4+3 \mathrm{i}$
(ii) $z=-1+\mathrm{i}$
(iii) $z=-1-\sqrt{3}$ i

Solution

(i) $z=4+3 \mathrm{i}$
$|z|=\sqrt{\left(3^{2}+4^{2}\right)}=5$
Since z lies in the first quadrant, $\arg z=\tan ^{-1} \frac{3}{4} \approx 0.644$
(ii) $z=-1+\mathrm{i}$
$|z|=\sqrt{\left(1^{2}+1^{2}\right)}=\sqrt{2}$
Since z lies in the second quadrant, $\arg z=\tan ^{-1}(-1)+\pi=-\frac{\pi}{4}+\pi=\frac{3 \pi}{4}$
(iii) $z=-1-\sqrt{3}$ i

Modulus $=\sqrt{1+3}=2$
Since z lies in the third quadrant, $\arg z=\tan ^{-1} \sqrt{3}-\pi=\frac{\pi}{3}-\pi=-\frac{2 \pi}{3}$

Edexcel AS FM Complex nos g1 Notes \& Examples

You can use the modulus (r) and the argument (θ) to write a complex number in the form $z=r(\cos \theta+\mathrm{i} \sin \theta)$. This is the modulus-argument form (sometimes called the polar form) of the complex number.

Make sure that you know the values of sin, cos and tan for the common angles $\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ (i.e. $30^{\circ}, 45^{\circ}, 60^{\circ}$). When you come across these angles, you are expected to use the exact values.

Sometimes you may want to find a complex number if you are given its modulus and argument.

You can see from the diagram that

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

These relationships allow you to find the real and imaginary parts of a complex number with a given modulus and argument.

Example 3
Find the complex numbers with the given modulus and argument, in the form $x+\mathrm{i} y$.
(i) $|z|=3, \quad \arg z=\frac{3 \pi}{4}$
(ii) $|z|=2, \quad \arg z=-\frac{\pi}{6}$

Solution

(i) $r=3, \theta=\frac{3 \pi}{4}$

$$
\begin{aligned}
& x=3 \cos \frac{3 \pi}{4}=3 \times-\frac{1}{\sqrt{2}}=-\frac{3}{\sqrt{2}} \\
& y=3 \sin \frac{3 \pi}{4}=3 \times \frac{1}{\sqrt{2}}=\frac{3}{\sqrt{2}} \\
& z=-\frac{3}{\sqrt{2}}+\frac{3}{\sqrt{2}} \mathrm{i}
\end{aligned}
$$

Edexcel AS FM Complex nos g1 Notes \& Examples

(ii) $r=2, \theta=-\frac{\pi}{6}$

$$
\begin{aligned}
& x=2 \cos \left(-\frac{\pi}{6}\right)=2 \times \frac{\sqrt{3}}{2}=\sqrt{3} \\
& y=2 \sin \left(-\frac{\pi}{6}\right)=2 \times-\frac{1}{2}=-1 \\
& z=\sqrt{3}-\mathrm{i}
\end{aligned}
$$

Multiplying and dividing using the modulus-argument form

Complex numbers in the modulus-argument form can be multiplied and divided easily by considering their moduli and arguments.

For two complex numbers w and z

$$
\begin{array}{ll}
|w z|=|w||z| & \left|\frac{w}{z}\right|=\frac{|w|}{|z|} \\
\arg w z=\arg w+\arg z & \arg \frac{w}{z}=\arg w-\arg z
\end{array}
$$

In both the results above for the argument, some adjustment may be needed to ensure that the final argument is between $-\pi$ and π, by adding or subtracting 2π. (This is illustrated in Example 4).

These results allow you to multiply and divide complex numbers in the modulus-argument form, quickly and easily.

These results can be interpreted geometrically using the Argand diagram:

- When z is multiplied by w, the vector z is enlarged by a scale factor $|w|$ and rotated through an angle of $\arg w$ anticlockwise about O
- When z is divided by w, the vector z is enlarged by a scale factor $\frac{1}{|w|}$ and rotated through an angle of $\arg w$ clockwise about O .

Example 4 shows how these relationships can be used.

Example 4
For the complex numbers $z=3\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)$ and $w=4\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right)$, find, in modulus-argument form,

Edexcel AS FM Complex nos g1 Notes \& Examples

(i) $w z$
(ii) $\frac{w}{z}$.

Illustrate the points $w, z, w z$ and $\frac{w}{z}$ on an Argand diagram.

Solution

$|z|=3,|w|=4$
$\arg z=\frac{2 \pi}{3}, \arg w=\frac{\pi}{2}$
(i) $\quad|w z|=|w| \times|z|=3 \times 4=12$ $\arg w z=\arg w+\arg z$

$$
\begin{aligned}
& =\frac{\pi}{2}+\frac{2 \pi}{3} \\
& =\frac{7 \pi}{6}
\end{aligned}
$$

Principal argument of $w z=\frac{7 \pi}{6}-2 \pi=-\frac{5 \pi}{6}$
$w z=12\left(\cos \left(-\frac{5 \pi}{6}\right)+\mathrm{i} \sin \left(-\frac{5 \pi}{6}\right)\right)$
(ii) $\quad\left|\frac{w}{z}\right|=\frac{|w|}{|z|}=\frac{4}{3}$
$\arg \frac{w}{z}=\arg w-\arg z$
$=\frac{\pi}{2}-\frac{2 \pi}{3}$
$=-\frac{\pi}{6}$
$\frac{w}{z}=\frac{4}{3}\left(\cos \left(-\frac{\pi}{6}\right)+\mathrm{i} \sin \left(-\frac{\pi}{6}\right)\right)$

Edexcel AS FM Complex nos g1 Notes \& Examples

