

Section 1: Modulus and argument

Exercise level 2

- 1. Given that $z_1 = 12 + 5i$ and $z_2 = -3 + 4i$, verify that $|z_1 + z_2| \le |z_1| + |z_2|$. Explain geometrically using an Argand diagram why $|z_1 + z_2| \le |z_1| + |z_2|$ is always true.
- 2. Given that $z_1 = 12 + 5i$ and $z_2 = 3 4i$ verify that $|z_1 z_2| \ge |z_1| |z_2|$. With reference to an Argand diagram give a geometric explanation of this result.
- 3. Write each of the following in modulus-argument form.
 - (i) $-2\sqrt{3} 2i$ (ii) $\frac{10}{\sqrt{3} i}$
- 4. Given that z = 1 + 2i, write in modulus-argument form the complex numbers (i) z (ii) z^* (iii) $\frac{1}{z}$ (iv) $\frac{1}{z^*}$ What do you notice?
- 5. Given that w=10i and z=1+√3i
 (i) write each of w and z in the form r(cos θ+i sin θ), where r>0 and -π < θ≤π.
 (ii) find wz, and ^w/_z in the form r(cos θ+i sin θ), where r>0 and -π < θ≤π.
- 6. Given that $z = \cos \theta + i \sin \theta$ find $\arg (z + 1)$. (Hint: draw an Argand diagram and use the double angle formulae $\sin 2\theta = 2\sin\theta\cos\theta$ and $\cos 2\theta = 2\cos^2 \theta 1$.)
- 7. The complex numbers α and β are given by α = 1-√3i and β = -2+2i.
 (i) Find |α|, |β|, arg α and arg β.
 (ii) Show the points A and B, representing α and β respectively, on an Argand diagram.
 (iii)Find β/α in the form r(cos θ+i sin θ), where r > 0 and -π < θ ≤ π.
 (iv)Hence describe fully the transformation which maps the line OA to the line OB.
- 8. Let $z_1 = -1 + i$ and $z_2 = \sqrt{3} + i$.
 - (i) Write z_1 and z_2 in polar form and hence write $\frac{z_1}{z_2}$ in polar form.
 - (ii) Write $\frac{-1+i}{\sqrt{3}+i}$ in the form a+bi.
 - (iii) Hence find the exact values of $\cos\left(\frac{7\pi}{12}\right)$ and $\sin\left(\frac{7\pi}{12}\right)$.

