Edexcel AS Further Maths Complex numbers

Section 1: Modulus and argument

Exercise level 2

1. Given that $z_{1}=12+5 \mathrm{i}$ and $z_{2}=-3+4 \mathrm{i}$, verify that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.

Explain geometrically using an Argand diagram why $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ is always true.
2. Given that $z_{1}=12+5 \mathrm{i}$ and $z_{2}=3-4 \mathrm{i}$ verify that $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$. With reference to an Argand diagram give a geometric explanation of this result.
3. Write each of the following in modulus-argument form.
(i) $-2 \sqrt{3}-2 \mathrm{i}$
(ii) $\frac{10}{\sqrt{3}-\mathrm{i}}$
4. Given that $z=1+2 \mathrm{i}$, write in modulus-argument form the complex numbers
(i) z
(ii) z^{*}
(iii) $\frac{1}{z}$
(iv) $\frac{1}{z^{*}}$

What do you notice?
5. Given that $w=10 \mathrm{i}$ and $z=1+\sqrt{3} \mathrm{i}$
(i) write each of w and z in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $r>0$ and $-\pi<\theta \leq \pi$.
(ii) find $w z$, and $\frac{w}{z}$ in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $r>0$ and $-\pi<\theta \leq \pi$.
6. Given that $z=\cos \theta+\mathrm{i} \sin \theta$ find $\arg (z+1)$. (Hint: draw an Argand diagram and use the double angle formulae $\sin 2 \theta=2 \sin \theta \cos \theta$ and $\cos 2 \theta=2 \cos ^{2} \theta-1$.)
7. The complex numbers α and β are given by $\alpha=1-\sqrt{3} \mathrm{i}$ and $\beta=-2+2 \mathrm{i}$.
(i) Find $|\alpha|,|\beta|, \arg \alpha$ and $\arg \beta$.
(ii) Show the points A and B , representing α and β respectively, on an Argand diagram.
(iii) Find $\frac{\beta}{\alpha}$ in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $r>0$ and $-\pi<\theta \leq \pi$.
(iv)Hence describe fully the transformation which maps the line OA to the line OB.
8. Let $z_{1}=-1+\mathrm{i}$ and $z_{2}=\sqrt{3}+\mathrm{i}$.
(i) Write z_{1} and z_{2} in polar form and hence write $\frac{z_{1}}{z_{2}}$ in polar form.
(ii) Write $\frac{-1+\mathrm{i}}{\sqrt{3}+\mathrm{i}}$ in the form $a+b \mathrm{i}$.
(iii) Hence find the exact values of $\cos \left(\frac{7 \pi}{12}\right)$ and $\sin \left(\frac{7 \pi}{12}\right)$.

