Edexcel AS Further Maths Complex numbers

\int "integral

Section 2: Loci in the complex plane

Notes and Examples

These notes contain subsections on:

- Circles
- Half-lines
- Perpendicular bisectors

There are several different types of loci which you need to be familiar with.

Circles

A set of points of the form $\left|z-z_{1}\right|=r$ represents a circle.
Read $|z-(a+b \mathrm{i})|$ as 'the distance from z to the point $a+b \mathrm{i}$
[note $|z-a+b i|$ can be written $|z-(a-b i)|$, which is the distance from z to the point $(a-b i)]$.

All sets of points given by $|z-(a+b \mathrm{i})|=r$ can be represented by a circle, centre $a+b \mathrm{i}$, radius r..
$|z-(a+b \mathrm{i})| \leq r$ represents the circle and its interior.
$|z-(a+b i)|<r$ represents the interior of the circle (but not the circle itself). In this case you should draw the circle as a dotted line, to show that it is not included in the set of points.
$|z-(a+b i)| \geq r$ represents the circle and its exterior.
$|z-(a+b i)|>r$ represents the exterior of the circle (but not the circle itself). Again, you should draw the circle as a dotted line, to show that it is not included in the set of points.

Half-lines

A set of points of the form $\arg \left(z-z_{1}\right)=\theta$ represents a half-line
The point z satisfies this locus when the line joining z_{1} to z has argument θ.
All sets of points of the form $\arg (z-(a+b \mathrm{i}))=\theta$ consist of a half-line from the point $a+b \mathrm{i}$ in the direction θ.

Sets of points of the form $\theta_{1} \leq \arg (z-(a+b \mathrm{i})) \leq \theta_{2}$ consist of the two half-lines $\arg (z-(a+b \mathrm{i}))=\theta_{1}$ and $\arg (z-(a+b \mathrm{i}))=\theta_{2}$ and the region between them .

Edexcel AS FM Complex nos 2 Notes \& Examples

Be careful with sets of points of the form $\arg (z-(a+b i)) \leq \theta$ or $\arg (z-(a+b i)) \geq \theta$. Make sure that you know where the region starts and ends. Remember that the possible values of $\arg z$ are given by $-\pi<\arg z \leq \pi$, and that any line which is not included in the set of points should be shown as dotted (see Example 1 below).

Example 1

Draw Argand diagrams to show each of the following sets of points.
(i) $\arg (z+1+2 \mathrm{i}) \leq \frac{\pi}{3}$
(ii) $\arg (z-2-i)>\frac{3 \pi}{4}$

Solution

(i) $\arg (z+1+2 \mathrm{i}) \leq \frac{\pi}{3}$ means that $\arg (z+1+2 \mathrm{i})$ can take any value between $-\pi$ and $\frac{\pi}{3}$, including $\frac{\pi}{3}$ but not $-\pi$. The half-line from $-1-2 \mathrm{i}$ in the direction $-\pi$ is therefore shown dotted, and the half-line from $-1-2 \mathrm{i}$ in the direction $\frac{\pi}{3}$ is shown as solid. The point $-1-2 \mathrm{i}$ is not included in the region, since $\arg (z+1+2 \mathrm{i})$ is not defined where $z=-1-2 \mathrm{i}$, so this point is shown by an open circle.

(ii) $\arg (z-2-\mathrm{i})>\frac{3 \pi}{4}$ means that $\arg (z-2-\mathrm{i})$ can take any value between $\frac{3 \pi}{4}$ and π, including π but not $\frac{3 \pi}{4}$ since the inequality involves $>$ rather than \geq. The half-line from $2+\mathrm{i}$ in the direction $\frac{3 \pi}{4}$ is therefore shown dotted, and the half-line from $2+\mathrm{i}$ in the direction π is shown solid. The point $2+\mathrm{i}$ is not included in the region, $\operatorname{since} \arg (z-2-\mathrm{i})$ is not defined where $z=2+\mathrm{i}$, so this point is shown by an open circle.

Edexcel AS FM Complex nos 2 Notes \& Examples

Perpendicular bisectors

A locus of the form $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ represents a straight line
The equation $|z-(a+b i)|=|z-(c+d \mathrm{i})|$ means that z is the same distance from the points representing the complex numbers $a+b \mathrm{i}$ and $c+d i$. The set of points for which this is true is the perpendicular bisector of a line connecting the points $a+b \mathrm{i}$ and $c+d \mathrm{i}$. The locus of z for $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ is therefore the perpendicular bisector of the line joining z_{1} to z_{2}.
$|z-(a+b \mathbf{i})| \leq|z-(c+d i)|$ means that z is nearer to $a+b \mathbf{i}$ than to $c+d \mathrm{i}$, so this represents the side containing the point $a+b$ i of the perpendicular bisector of the line joining $a+b \mathrm{i}$ to $c+d \mathrm{i}$. As with the circles, in the case of \leq or \geq the perpendicular bisector itself is included, so is shown in as a solid line, but for < or $>$ the line must be shown as dotted as it is not included.

Be careful not to mix up a perpendicular bisector locus with a circle locus!

