

Section 2: Loci in the complex plane

Exercise level 1

- For each of the following draw an Argand diagram showing the points *z* for which

 |z|=3
 |z-2|=5
 |z-1-2i|=3
 |z+1|=|z-3|
- 2. Given that $z_1 = 1 + 3i$

(i) Sketch on an Argand diagram the locus of $|z - z_1| = 3$.

(ii) Sketch on an Argand diagram the locus of $\arg(z-z_1) = \frac{\pi}{3}$.

3. Draw an Argand diagram showing the set of points z for which the following conditions are true:

(i)
$$\arg z = \frac{\pi}{4}$$

(ii) $\arg (z-2) = \frac{2\pi}{3}$
(iii) $\frac{\pi}{6} \le \arg (z-i) \le \frac{\pi}{2}$

4. Draw an Argand diagram to show the locus of z in each of the following cases:

(i)
$$|z-4| = |z-6|$$

(ii) $|z-2| = |z+4|$
(iii) $|z-(2+2i)| = |z+(2+2i)|$
(iv) $|z+4+i| = |z+4+6i|$

5. On an Argand diagram shade the region representing the complex number z which satisfies the inequalities:

$$|z-2| \le 3$$
 and $0 \le \arg z \le \frac{\pi}{4}$

