Edexcel AS Further Maths Complex numbers

Section 1: Introduction to complex numbers

Exercise level 2

1. $z=-3+4 \mathrm{i}$ and $w=\frac{5+2 \mathrm{i}}{z}$

Find w, giving your answer in the form $a+b \mathbf{i}$, where a and b are real.
2. Given that $z=(a+i)^{4}$ where a is real, find values for a such that
(i) z is real,
(ii) z is wholly imaginary.
3. Given that $a+b \mathrm{i}$ is the conjugate of $(a+b \mathrm{i})^{2}$ find all possible pairs of values for a and b.
4. Simplify and write in the form $a+b \mathrm{i}$:
(i) $\frac{1}{3+2 \mathrm{i}}+\frac{1}{3-2 \mathrm{i}}$
(ii) $3+i+\frac{4}{3-i}$
(iii) $\frac{3}{1-\mathrm{i}}-\frac{2 \mathrm{i}}{2+\mathrm{i}}$
5. Find values for a and b that satisfy each of the following:
(i) $(a+b \mathrm{i})(2+\mathrm{i})=a-3 \mathrm{i}$
(ii) $(a+\mathrm{i})(4-b \mathrm{i})=3 b+2 a \mathrm{i}$
6. By writing $(a+b i)^{2}=3-4 \mathrm{i}$, find values for a and b and hence find the square roots of $3-4 \mathrm{i}$.
7. Find the values of p and q given that one root of the equation $z^{2}+p z+q=0$ is:
(i) $2-\mathrm{i}$
(ii) $1-3 \mathrm{i}$
(iii) 2 i
(iv) $5-3 \mathrm{i}$
8. Given that $\frac{5}{a+b \mathrm{i}}+\frac{2}{1+3 \mathrm{i}}=1$, where a and b are real, find the values of a and b.

