Edexcel AS Further Maths Complex numbers

Section 1: Introduction to complex numbers

Exercise level 1

1. Find the roots of the following equations:
(i) $z^{2}+25=0$
(ii) $4 z^{2}+9=0$
(iii) $z^{2}-2 z+2=0$
(iv) $4 z^{2}+4 z+5=0$
2. Two complex numbers $4-3 \mathrm{i}$ and $2+\mathrm{i}$ are denoted by z and w respectively. Find, giving your answers in the form $x+y$ i.
(i) $2 z-3 w$
(ii) $z w$
(iii) $(\mathrm{i} z)^{2}$
(iv) $z^{*} w$
3. In each of the following cases find
(a) $z_{1}+z_{2}$
(b) $z_{1}-z_{2}$
(c) $z_{1} z_{2}$
(d) $z_{1}{ }^{*}$
(e) $z_{2}{ }^{*}$
(f) $z_{1}{ }^{*}+z_{2}{ }^{*}$
(g) $z_{1}^{*}-z_{2}^{*}$
(h) $z_{1}{ }^{*} z_{2}{ }^{*}$
(i) $z_{1}=2+3 \mathrm{i} ; z_{2}=1-2 \mathrm{i}$
(ii) $z_{1}=-2 \mathrm{i} ; z_{2}=3+\mathrm{i}$

What do you notice about the results?
4. Find the quadratic equation which has roots $2+3 \mathrm{i}$ and $2-3 \mathrm{i}$.
5. Express these complex numbers in the form $x+y i$.
(a) $\frac{2}{3+\mathrm{i}}$
(b) $\frac{2-\mathrm{i}}{1+2 \mathrm{i}}$
6. Solve the equation $(2+i) z=3+4 i$.
7. One root of the quadratic equation $z^{2}+a z+b=0$ where a and b are real, is the complex number $1+2 \mathrm{i}$.
(i) Write down the other root.
(ii) Find the values of a and b.

