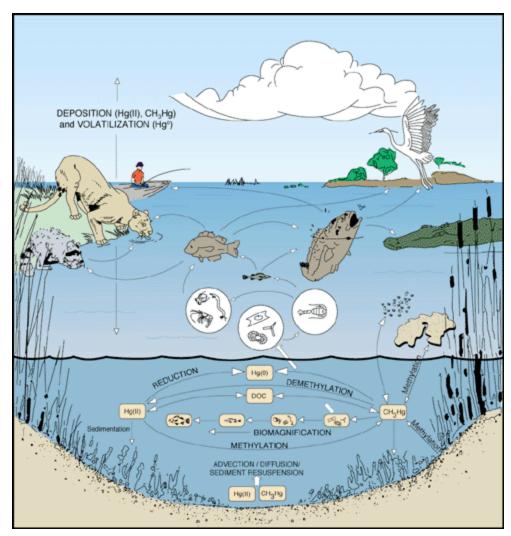
On-Site Treatment of Soils with Leachable Mercury During Mine Remediation

Paul R. Lear, Ph.D. and Chris Brown, PMP

Presentation Outline


- Mercury
 contamination
 during mine
 reclamation
- Stabilization of mercury
- Treatability testing
- Full-scale treatment
- Conclusions

Mercury Contamination During Mine Remediation

- Historic smallscale gold and silver mining
 - Mercury used as a scavenger
- Mining and processing of cinnabar ore

From US Geological Survey

Mercury Contamination During Mine Remediation

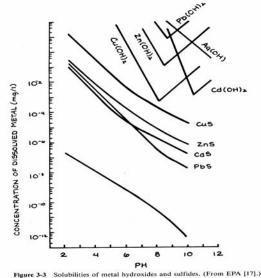
- Leachable mercury can be found at:
 - □ Ore piles
 - Tailing piles
 - Soils underlying mill/ore processing areas
 - Slurry/sludge pipelines

Mercury Contamination at the Mine

 Materials from these areas can be determined to be hazardous waste

May not be disposed of off-site as is

 May require treatment to chemically immobilize the mercury prior to shipment for disposal



Stabilization of Mercury

- Chemistry, not alchemy
- Convert Hg in wastes to sparingly soluble sulfides or sulfide type products

 Encapsulate mercury sulfides or sulfide type products in cement matrix

Compound	Ksp	Compound	Ksp	
CdS	7.0x10 ⁻²⁷	HgS	3.0x10 ⁻⁵²	
CoS	8.0x10 ⁻³⁶	Hg ₂ S	3.0x10 ⁻²⁰	
FeS	3.0x10 ⁻¹⁷	NiS	2.0x10 ⁻²²	
PbS	1.3x10 ⁻²⁸	Ag ₂ S	8.0x10 ⁻⁵⁰	
MnS	1.1x10 ⁻¹¹	ZnS	1.6x10 ⁻²³	

Stabilization of Mercury

- Sulfide reagents for mercury stabilization
 - Sodium sulfide
 - Ferrous sulfide
 - Calcium polysulfide (CPS)

 - □ Nalmet 8154
- Envirocon prefers to utilize CPS
 - Relatively inexpensive and easy to handle
 - Commonly used in water treatment and as an agricultural fungicide

Treatability Testing

- Representative samples collected and transported to a laboratory
- Sample material is homogenized and aliquots mixed with varying amounts of CPS or CPS + Portland Cement
- Treated aliquots subjected to TCLP and the leachable mercury levels compared to regulatory standards

Treatability Testing - Example

- Two samples collected
 - □ Soil
 - □ Sludge
- Mixed with varying amounts of CPS

Waste	Regulatory	Calcium Polysulfide Mix Ratio (% by weight)					
Material	Limit	0	0.5	1	1.5	2	2.5
iviateriai		Leachable Mercury (mg/L)					
Soil	0.1	0.079	0.316	0.419	0.533	0.518	0.525
Sludge	0.1	1.57		0.104	0.0729	1.01	0.704

 Inconsistent results indicate insufficient amounts of CPS were used

Treatability Testing - Example

- Additional testing with the sludge sample
 - Higher CPS addition
 - Added Portland cement addition

		Calcium Polysulfide Mix Ratio (% by weight)						
Masta	Regulatory	4	4	5	5	6	6	
Waste Material	Limit	Portland Cement Mix Ratio (% by weight)						
iviateriai		8	10	12	8	10	12	
Leachable Mercury (mg/L)								
Sludge	0.1	<0.002	0.0066	0.0136	0.0168	0.0098	0.0048	

 Selected 4% CPS / 8% Portland Cement for full-scale treatment

Full Scale Treatment

- Mercury contaminated soil is excavated and placed into poly-lined and bermed cells
 - □ The volume of each stockpile is determined
 - Based on bulk density measured, the weight of material in stockpile is calculated
- CPS is transferred from a reagent storage tank via a chemical feed pump and added to the stockpile at the appropriate weight
- Portland Cement in supersacks is added to the stockpile at the appropriate weight

Full Scale Treatment

- An excavator is used to mix the amended stockpiles
 - An excavator operator lifts, turns, and folds the amended stockpile for a minimum of 90 minutes, or until the stockpile material is visually homogeneous
- Samples are collected from each treated stockpile within 24 hours of treatment
 - Grab or composite samples
- TCLP results confirm successful treatment of the stockpiles

- Mercury contaminated soil excavated and placed into poly-lined bermed cells
- Volume of each stockpile determined
- Based on bulk density measured, the weight of material in stockpile was calculated

- CPS was transferred from a reagent storage tank via a chemical feed pump and added to the stockpile at 4% by weight
- Portland cement in supersacks was added to the stockpile at 8% by weight

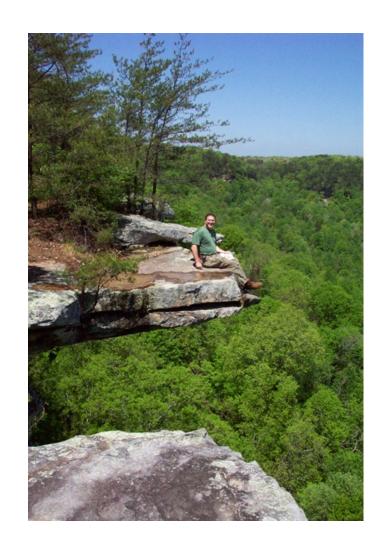
An excavator operator lifted, turned, and folded the amended stockpile for a minimum of 90 minutes or until the stockpile material was visually homogeneous

- Grab samples are collected from each treated stockpile within 24 hours of treatment
- TCLP results confirm successful treatment of the stockpiles

Waste	Regulatory Limit	Sample Result		
Stockpile	Leachable Mercury (mg/L)			
HW-7	0.1	0.0137		
HW-4	0.1	0.0089		

- Treated material was transported off site to a landfill for disposal
 - Non-hazardous waste

Conclusions


- Stabilization of mercury is technically feasible
- Mercury contaminated mining wastes can be successfully treated on site
- Cost-effective as compared to off site transportation and disposal to a hazardous waste landfill

Questions or Comments?

Paul Lear
plear@envirocon.com
865-919-5205

